Translation of the Original Instructions

Operating manual

Single Stage Radial Fan

Design KBE

with oil-lubricated anti-friction bearings

See chapter 14 of this operating manual for detailed addresses of all companies of the REITZ Group.
Please read this operating manual carefully. In case of doubts or if uncertain points occur, please clarify them with REITZ first.

The operating manual is, like spare parts lists and documentations of sub-suppliers, a separate part of the complete documentation. The complete documentation must be made available to the personnel appointed to operating and maintenance works.

OPERATING MANUAL: RADIAL FAN KBE

© 2011 REITZ Holding GmbH & Co. KG

Copyright on the operating manual

REITZ HOLDING holds the copyright in this operating manual.

This operating manual is intended for technical personnel that performs the following work related to the fan: transport, mounting, commissioning and start-up, operation, operating, troubleshooting, maintenance, repair, shutting-down, dismantling, disposal. Instructions and drawings of technical nature must not be copied in parts or completely, distributed or used without authorization for the purpose of competition or information of third parties.

This operating manual was drawn up with the utmost care. REITZ HOLDING is not liable for possible errors in this operating manual. Liabilities for indirect and / or direct damages that are related to the delivery or the usage of this operating manual are excluded, as far as legally permitted.

This document is a translation. In case of discrepancy the original and obligatory version is the German original.
Table of contents

1. **Introduction** ... 1.1
 1.1 EC Declaration of conformity and EC Declaration of incorporation ... 1.1
 1.2 Fan data sheet ... 1.1
 1.3 Description .. 1.2
 1.4 Intended use .. 1.2
 1.4.1 Fans according to 94/9/EG ... 1.2
 1.4.2 Limits for use of fans acc. to 94/9/EG (ATEX) .. 1.3
 1.5 Installations and mounting instructions to reduce noise and vibrations 1.4
 1.6 General remarks ... 1.5
 1.7 Nameplate ... 1.7

2. **Safety instructions** ... 2.1
 2.1 General remarks ... 2.1
 2.2 Danger outline .. 2.1
 2.3 Symbols .. 2.3
 2.4 Safety regulations ... 2.5
 2.5 Regulations, standards ... 2.6
 2.6 Electric connection conditions .. 2.8
 2.7 Marking, danger signs ... 2.9
 2.8 Qualified person ... 2.9
 2.9 Personal protective equipment .. 2.10
 2.10 Risk of slipping, tripping or falling .. 2.11
 2.11 Measures in case of electrical power outage ... 2.11

3. **Transport, Installation** ... 3.1
 3.1 General remarks ... 3.1
 3.2 Safety instructions .. 3.1
 3.3 Regulations, standards .. 3.2
 3.3.1 Load suspension devices .. 3.3
 3.4 Packing ... 3.4
 3.5 Transport .. 3.6
 3.5.1 Transport damages .. 3.7
 3.5.2 Intermediate storage ... 3.7
 3.6 Installation ... 3.8
 3.6.1 General remarks ... 3.8
 3.6.2 Safety instructions ... 3.8
 3.6.3 Foundation ... 3.9
 3.6.4 Sealing .. 3.9
 3.6.5 Bolted connections .. 3.10
 3.6.6 Installation process .. 3.12
 3.6.7 Alignment of the shafts ... 3.26
 3.7 Connections .. 3.29
 3.7.1 General remarks ... 3.29
 3.7.2 Safety instructions ... 3.29
3.7.3 Ducting of fan ... 3.30
3.7.4 Check of clearances ... 3.31
3.7.4.1 Check of clearance for impeller with shroud 3.32
3.7.4.2 Check of clearance for unshrouded impeller 3.33
3.7.5 Use of flexible connections .. 3.34
3.7.5.1 Installation of flexible connections 3.34
3.7.6 Use of chutes ... 3.34
3.7.7 Electric connection conditions .. 3.35
3.7.7.1 Earthing ... 3.35
3.7.7.2 Monitoring devices ... 3.36
3.7.8 Seal connection ... 3.36

4. **Start-up** .. 4.1
4.1 General remarks ... 4.1
4.2 Mechanical check ... 4.1
4.2.1 Alignment ... 4.1
4.3 Electric check ... 4.2
4.3.1 Monitoring devices / auxiliary equipment 4.2
4.3.2 Check of sense of rotation .. 4.3
4.3.3 Commutating wrong sense of rotation 4.3
4.4 Start-up of fan ... 4.4
4.4.1 General remarks ... 4.4
4.4.2 Safety instructions .. 4.4
4.4.3 Switching on of the fan ... 4.5
4.4.3.1 Direct starting ... 4.5
4.4.3.2 Star-delta-starting ... 4.6
4.4.3.3 Prevention of high negative torque impacts during test run ... 4.6
4.4.3.4 Fan operation with variable speed control 4.6
4.4.4 Disconnecting of fan ... 4.7

5. **Operation, Operating** .. 5.1
5.1 General remarks ... 5.1
5.2 Safety instructions .. 5.1
5.3 Operational performance of the fan 5.1
5.4 Disconnecting of fan .. 5.2
5.5 Emergency stop of fan .. 5.2
5.6 Automatic operation of fan .. 5.2
5.6.1 Variable speed control with frequency converter 5.5
5.6.2 Natural frequency of the impeller 5.6
5.6.3 Parameterising the variable speed control 5.6
5.6.4 Speed control range ... 5.6
5.7 Minimum speeds for oil-lubricated bearings in single bearing housings 5.7

6. **Trouble, Repair** ... 6.1
6.1 General remarks ... 6.1
6.2 Safety instructions ... 6.1
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Troubles</td>
<td>6.2</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Bearing troubles</td>
<td>6.3</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Coupling troubles</td>
<td>6.3</td>
</tr>
<tr>
<td>7.</td>
<td>Maintenance</td>
<td>7.1</td>
</tr>
<tr>
<td>7.1</td>
<td>General remarks</td>
<td>7.1</td>
</tr>
<tr>
<td>7.2</td>
<td>Safety instructions</td>
<td>7.2</td>
</tr>
<tr>
<td>7.3</td>
<td>Bearings</td>
<td>7.3</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Lubrication</td>
<td>7.4</td>
</tr>
<tr>
<td>7.3.1.1</td>
<td>General remarks</td>
<td>7.4</td>
</tr>
<tr>
<td>7.3.1.2</td>
<td>Factory-provided filling with special anti-corrosion oil</td>
<td>7.5</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Anti-friction bearings</td>
<td>7.6</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Oil lubrication methods</td>
<td>7.7</td>
</tr>
<tr>
<td>7.3.2.2</td>
<td>Oil quantities and oil types</td>
<td>7.8</td>
</tr>
<tr>
<td>7.3.2.3</td>
<td>Sealing of the bearings</td>
<td>7.9</td>
</tr>
<tr>
<td>7.3.2.4</td>
<td>Bearings monitoring devices</td>
<td>7.9</td>
</tr>
<tr>
<td>7.3.2.5</td>
<td>Oil change – lubrication intervals</td>
<td>7.10</td>
</tr>
<tr>
<td>7.3.2.6</td>
<td>External oil supply</td>
<td>7.11</td>
</tr>
<tr>
<td>7.4</td>
<td>Shaft seal</td>
<td>7.12</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Standard seal</td>
<td>7.12</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Shaft seal with graphite ring</td>
<td>7.12</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Seal with special rings</td>
<td>7.13</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Shaft seal with grease barrier</td>
<td>7.13</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Shaft seal with barrier gas</td>
<td>7.13</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Shaft seal of type REW6 (Ø 40 to Ø 120)</td>
<td>7.14</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Shaft seal of type REW6 (Ø 140 to Ø 240)</td>
<td>7.14</td>
</tr>
<tr>
<td>7.5</td>
<td>Shaft earthing</td>
<td>7.15</td>
</tr>
<tr>
<td>7.6</td>
<td>Coupling</td>
<td>7.16</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Alignment</td>
<td>7.16</td>
</tr>
<tr>
<td>7.7</td>
<td>Marking, information sign</td>
<td>7.17</td>
</tr>
<tr>
<td>7.8</td>
<td>Waste disposal</td>
<td>7.19</td>
</tr>
<tr>
<td>7.9</td>
<td>Revision</td>
<td>7.19</td>
</tr>
<tr>
<td>7.10</td>
<td>Maintenance schedule</td>
<td>7.20</td>
</tr>
<tr>
<td>8.</td>
<td>Repair work</td>
<td>8.1</td>
</tr>
<tr>
<td>8.1</td>
<td>General remarks</td>
<td>8.1</td>
</tr>
<tr>
<td>8.2</td>
<td>Fans in accordance with directive 94/9/EC ATEX</td>
<td>8.2</td>
</tr>
<tr>
<td>8.3</td>
<td>Safety instructions</td>
<td>8.2</td>
</tr>
<tr>
<td>8.4</td>
<td>Spare parts</td>
<td>8.3</td>
</tr>
<tr>
<td>9.</td>
<td>Annex</td>
<td>9.1</td>
</tr>
<tr>
<td>9.1</td>
<td>Additional technical information</td>
<td>9.1</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Tightening moments for fastening screws</td>
<td>9.1</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Limiting values vibrations</td>
<td>9.2</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Limiting values bearing temperatures</td>
<td>9.3</td>
</tr>
<tr>
<td>9.2</td>
<td>Requests regarding field service staff</td>
<td>9.4</td>
</tr>
</tbody>
</table>
10. Fan shutdown.. 10.1
 10.1 General remarks ... 10.1
 10.2 Safety instructions .. 10.1
 10.3 Measures in case of extended shutdown... 10.2
 10.4 Measures in case of re-commissioning... 10.2

11. Dismantling... 11.1
 11.1 General remarks .. 11.1
 11.2 Safety instructions .. 11.1

12. Safety data sheets.. 12.1

13. Expiry of service life, disposal.. 13.1

14. Addresses of the REITZ group.. 14.1
1. Introduction

This general operating manual is valid for all fans of this structural design including those that are designed in accordance to the Directive 94/9/EC on the approximation of the laws of the Member States concerning equipment and protective systems intended for use in potentially explosive atmospheres (ATEX). All fans are designed and produced in accordance with EC Machinery Directive 2006/42/EC.

1.1 EC Declaration of conformity and EC Declaration of incorporation

Being part of the overall documentation, these declarations are attached as separate documents to this operating manual (see enclosure).

The fan design in accordance with EC directive 94/9/EC (ATEX) will be certified by correspondent declaration of conformity.

1.2 Fan data sheet

The fan data sheet (see enclosure) is also attached as a separate document to this operating manual. All relevant technical data of the fan is clearly given in the fan data sheet. It may also be called technical data sheet and is generated for each individual fan.

The fan data sheet contains the following information:

- Serial fan number
- Fan type
- Flow data (nominal data and operating points)
- Motor data
- Acoustic data
- Material data
- Type of coating
- Bearing details
- Details about coupling
- Fan equipment and accessories
- Customer’s order number
- Customer’s type designation

For fans according to EC directive 94/9/EC (ATEX), an additional part of the documentation is the completed and signed form of the questionnaire (RKU0063-…. as amended from time to time) and – if applicable – the indication of the certification body where the documentation for fans of category II was lodged.
1.3 Description

The fan of KBE design is a welded single-stage radial fan. Power is transmitted from motor shaft to fan shaft by a flexible coupling. Depending on the design type, the fan shaft runs:
- in two oil-lubricated anti-friction bearings in single bearing housings or
- in two or three oil-lubricated anti-friction bearings in a multiple bearing block.

Further technical information that is not covered by this operating manual can be requested from the manufacturer. The fan can be designed for use in potentially explosive atmosphere. An individual nameplate indicates the equipment group and category as per directive 94/9/EC (ATEX).

1.4 Intended use

The fan is designed, calculated, produced, tested and delivered in accordance with the design conditions stated in the order. The values given in the fan data sheet must not be exceeded. Any other or exceeding use is considered to be improper use. Damages resulting from improper use are excluded from the manufacturer’s liability.

1.4.1 Fans according to 94/9/EG

If the fan is designed in accordance to EC directive 94/9/EC (ATEX), the intended use is restricted to:
- the field of application
- the equipment group and category
- the explosion group for gases and vapours
- the gas or dust type
- the temperature class

These specifications can be found on the ATEX nameplate at the fan and in the corresponding ATEX questionnaire. Any other use or application in installation conditions deviating from those there stipulated is prohibited.
The limiting conditions for the use of fans that are designed according to Directive 94/9/EG are:
- Maximum inlet temperature under ambient atmospheres in the temperature range from -20°C to +60°C
- Absolute pressure from 0.8 to 1.1 bar
- Maximum 21% oxygen share in volume flow

If the operating conditions differ from the stated limiting conditions, a special contract of work and labour has to be concluded with REITZ. The design must be documented by a separate ignition hazard assessment.
1.5 Installations and mounting instructions to reduce noise and vibrations

Take the following measures to reduce noise and to protect the operating personnel's health:

- Connect the fan to the duct work at inlet and discharge prior to fan start-up
- Mount the sound protection covers and hoods for motor and bearing (if included in the delivery)
- Isolate the housing on-site if the fan is prepared for insulation and this is included in the delivery
- Wear personal protective equipment (especially ear protection) → see also chapter 2.2 Danger outline

Take the following measures to reduce the vibrations and to avoid the transmission of vibrations to the duct work:

- Check the impeller according to the maintenance plan (see chapter 7.10 Maintenance schedule) with regard to sticking material, wear and tear, etc. since out-of-balance might result in an increase in fan vibrations → see chapter 9.1.2 Limiting values vibrations
- Mount the flexible connections at inlet and discharge prior to fan start-up (see also chapter 3.7.5 Use of flexible connections).
1.6 General remarks

This universal operating manual assists the operating company to carry out the safe and proper transport, installation, commissioning, start-up and maintenance of the fan.

This operating manual exclusively refers to the fan, but not to the electrical equipment like drive motors and other auxiliary drives. The unit “fan and motor” will not turn into electrical equipment when an electric drive is mounted. Please observe the operating and maintenance instructions of the motor manufacturer for mounting, installation and maintenance of the electric motors and auxiliary drives.

This operating manual describes and represents components that may not be included in your delivery.

In addition, our scope of delivery can include components and additional equipment that are not mentioned in these instructions. In that case, please observe the corresponding operating manuals of the relative producers. If applicable, request them from REITZ.

This operating manual is subject to modifications due to further technical development of the fan described herein.

Many images and drawings of this operating manual are simplified representations. Due to improvements and modifications the fan operated by your company might vary from the representations.

We reserve the copyright in this operating manual and the attached drawings and further documents.

The manufacturer will not undertake liability for damages that

- occur during the warranty period resulting from:
 - inadequate maintenance,
 - improper operating and another than the intended use
 - faulty mounting and installation,
 - incorrect or inexpert connection of electric or mechanic machines and devices.

- result or originate from unauthorized modifications or from disregarding the manufacturer’s recommendations and instructions.

- result from the use of accessories, equipment and/or spare parts that are not recommended by or delivered from the manufacturer.
This operating manual serves to avoid personal injury, property damage, functional failure as well as environmental damage.

Read these instructions carefully and completely before start of work. Should you have any questions or in case of doubts please do not hesitate to contact REITZ.

Keep these instructions in a safe place. They must be accessible for the operating company at any time. Protect them against harmful environmental influences and keep them in a legible and complete condition. Store them near to the fan.

The following additional instructions apply for fans according to directive 94/9/EC (ATEX):

If any technical modification at a fan that was designed and constructed in accordance with directive 94/9/EC (ATEX), that has not been agreed upon prior to the modification with Reitz, is carried out the originally issued declaration of conformity will become invalid.

The validity of the declaration of conformity can be maintained, if a qualified person carries out applicable tests and examinations after the technical modifications and prior to recommissioning of the fan and keeps records of the tests. In particular, these inspections are the check of the gap measure, vibration test and further checks to ensure that the formation of sparks is eliminated. The qualified person must be authorized to install and mount the components in accordance with §§ 14 and 15 of the German Health and Safety at Work Regulations („Betriebssicherheitsverordnung BetrSichV“). In addition, the qualified person must be able to recognize possible dangers for persons, property and environment and to avoid them. A written confirmation of the checks and examinations along with corresponding test reports must be sent to Reitz without further request. Please contact REITZ if any questions or uncertainties occur.

If the fan is of category II, we will inform the certification body, to which the documentation has been sent, accordingly.
1.7 Nameplate

The nameplate shows the following information:
- Manufacturer
- Address
- Designation of the machine
- Type designation
- Serial number
- Year of construction
- Technical data
- CE - sign

If technical information is or spare parts are required, all above mentioned data must be communicated.

If the fan is designed in accordance with directive 94/9/EC (ATEX), it has an additional nameplate with the following information:
- manufacturer
- address
- ATEX marking
- type designation
- serial number
- certification body

Figure 1: Example of an ATEX-nameplate
2. Safety instructions

2.1 General remarks

It is essential to read the operating manual prior to transport, installation, commissioning, start-up, operating, repair and maintenance. The instructions have to be observed.

2.2 Danger outline

Radial fan – single-stage, structural design KBE

<table>
<thead>
<tr>
<th>Kind of danger</th>
<th>Location of danger</th>
<th>Danger</th>
<th>Additional measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>rubbing and abrasing</td>
<td>brake (optional), all rotating parts</td>
<td>explosion hazard by sparking and/or hot surfaces</td>
<td>observe operating manual, wear personal protective equipment</td>
</tr>
<tr>
<td>impact and rubbing</td>
<td>housing, impeller, motor, improper handling during transport</td>
<td>explosion hazard by sparking and/or hot surfaces</td>
<td>observe operating manual and transport instructions</td>
</tr>
<tr>
<td>corrosion</td>
<td>housing, impeller, motor, improper storage or intermediate storage</td>
<td>deposits of corrosion increase the risk of ignition and sparking, explosion hazard</td>
<td>observe operating manual and the storage and corrosion protection instructions</td>
</tr>
<tr>
<td>crushing, shearing, impact</td>
<td>unloading, lifting, mounting and installation of the fan</td>
<td>danger to life, risk of injury and property damage</td>
<td>pay attention to safe fastening and safe foundation / floor conditions</td>
</tr>
<tr>
<td>entangling, winding, drawing-in, trapping, faulty installation</td>
<td>heat flier, impeller, all rotating parts, brake (optional)</td>
<td>danger to life, risk of injury and property damage</td>
<td>observe operating manual</td>
</tr>
<tr>
<td>electrical hazard</td>
<td>directly by alive parts</td>
<td>danger to life</td>
<td>observe motor manufacturer’s operating manual</td>
</tr>
<tr>
<td></td>
<td>indirectly by faulty alive parts</td>
<td>danger to life</td>
<td>observe safety regulations</td>
</tr>
<tr>
<td>thermal hazard caused by contact and burn</td>
<td>hot surfaces</td>
<td>danger to life, risk of injury and property damage, risk of explosion due to heightened ignition risk</td>
<td>wearing of personal protective equipment by staff, if necessary, customer must install safety areas</td>
</tr>
<tr>
<td>thermal hazard caused by improper installation, commissioning and start-up</td>
<td>hot surfaces e.g. housing, lifting lugs, drain, fan pedestal</td>
<td>danger to life, risk of injury and property damage, risk of explosion due to heightened ignition risk</td>
<td>wearing of personal protective equipment by staff, if necessary, customer must install safety areas</td>
</tr>
<tr>
<td>hazard generated by materials and foreign substances and improper use</td>
<td>housing, impeller, bearings, driving elements, monitoring devices</td>
<td>risk of property damages and danger of injury</td>
<td>observe operating manual, provide sufficient ventilation, avoid penetration and drag-in of foreign substances</td>
</tr>
<tr>
<td>high pressure ingress and ejection of fluids and gases</td>
<td>shaft seal with purge medium connection</td>
<td>danger to life, risk of injury and property damage</td>
<td>observe the operating manual, wearing of personal protective equipment</td>
</tr>
<tr>
<td>hazard generated by noise</td>
<td>during operation the sound emission exceeds 70 dB(A)</td>
<td>impairment of hearing ability, danger of injury</td>
<td>observe the operating manual, wearing of personal protective equipment</td>
</tr>
<tr>
<td>Kind of danger</td>
<td>Location of danger</td>
<td>Danger</td>
<td>Additional measures</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>combination of hazards</td>
<td>danger for machinery, personnel and environment if the commissioning, start-up of the fan is not carried out by sufficiently trained staff members</td>
<td>danger of injury, property damages, environmental damages</td>
<td>observe operating manual</td>
</tr>
</tbody>
</table>

Table 1 – danger outline
2.3 Symbols

The following symbols used in this operating manual need to be particularly observed:

Observe carefully the safety instructions that are listed next to the symbols in the following chapters. A label with these symbols and the corresponding instructions is also fixed to the fan.

DANGER!
Danger to life!
Serious physical injury with potential fatal consequences.

DANGER!
Danger of death by electrocution!
Serious physical injury with potential fatal consequences.
Working must exclusively be carried out by authorized electrician.

DANGER!
Risk of fatal injury from entangling, drawing-in or trapping
Serious physical injury with potential fatal consequences.
Beware of automatic operation.

DANGER!
Explosion hazard!
Spark formation or hot surfaces
Serious physical injury with potential fatal consequences.

WARNING!
Very hot surface – Do not touch!
Risk of burns. Severe personal injury.

WARNING!
Risk of escaping of hot or dangerous gases.

CAUTION!
Risk related to exposure to noise!
Physical injury
Wear ear protection when fan is in operation.
WARNING!
Environmental harm!
Considerable damage caused to the environment.

NOTICE!
Read the operating manual.

NOTICE!
Refers to useful information and explanations.
2.4 Safety regulations

The following instructions and regulations that are part of the operating manual are strictly to be observed.

- safety regulations,
- regulations for the prevention of accidents,
- directives and accepted engineering standards.

Disregarding the safety regulations causes the risks of personal injury and damage to the fan.

Any work on fans that are marked according to directive 94/9/EC (ATEX) must exclusively be carried out by qualified persons that are authorised as per §§ 14 and 15 of the German Health and Safety at Work Regulations („Betriebssicherheitsverordnung BetrSichV“), unless these works are carried out by trained personnel of Reitz.
2.5 Regulations, standards

Working on the fan must comply with the valid rules for the prevention of accidents and the accepted engineering standards.

- Betriebssicherheitsverordnung (German Health and Safety at Work Regulations (BetrSichV) – “Regulations on safety and health protection for the provision of work equipment and their use for work, on the safety of the operation of plants that require special monitoring and on the organisation of health and safety protection at factory level” (translation of the full German title).

- VDMA 24165 “Ventilatoren – Sicherheitsanforderungen” (Industrial fans, safety requirements - VDMA – Verband Deutscher Maschinen- und Anlagenbau eV – German Engineering Federation)

- Regulations for the prevention of accidents (BGVs) of the “Berufsgenossenschaften (BGs)” (institutions for statutory accident insurance and prevention in Germany)
 - „Grundsätze der Prävention“ BGV A1 (General prescriptions) BGV A1
 - „Elektrische Anlagen und Betriebsmittel“ BGV A3 (Electrical installations and operating material) BGV A3
 - „Lärm“ BGV B3 (Noise) BGV B3

- Occupational Safety Regulations for safety and health at work (BG rules - BGR)
 - „Explosionsschutz-Regeln - Regeln für das Vermeiden der Gefahren durch explosionsfähige Atmosphären“ BGR 104 (bisher ZH 1/10). (Explosion protection regulations – regulations for the prevention of dangers caused by ignitable atmospheres BGR 104 (so far ZH1/10)
 - „Vermeidung von Zündgefahren infolge elektrostatischer Aufladungen“ BGR132 (bisherige ZH 1/200) (Prevention of the ignition risk due to electro-static charging – BGR 132 (so far ZH 1/200)
 - “Betreiben von Arbeitsmitteln“ BGR 500, Kap. 2.8 (Use of work equipment BRG 500 chap. 2)
• Harmonised European standards and national standards
 - EN 1127-1 „Explosive atmospheres – Explosion prevention and protection“
 - DIN 24166 „Technische Lieferbedingungen für Ventilatoren“
 (German Industrial Standard - Technical delivery conditions for fans)
 - DIN EN 14986 „Konstruktion von Ventilatoren für den Einsatz in explosionsgefährdeten Bereichen“
 (Design of fans working in potentially explosive atmospheres)^
• EU Directive
 - 89/686/ECC „Personal protective equipment“
 - 2009/104/EC „Use of work equipment“
2.6 Electric connection conditions

The operating company has to observe the instructions and to meet the connection conditions of the local electric supply company for the electric connection of the motor and the auxiliary drives (if any) and the system.

All electric works on the machine and its connections must exclusively be carried out by professional electricians that are authorized by the definition regarding professionals (e.g. German definition DIN VDE 0105 and IEC 364).

It has to be ensured that type of current, voltage and frequency of the electric power supply are suitable for the below enlisted components and that the electric connections are expertly made for:
- drive motor/s fan
- actuator/s damper/s
- monitoring devices
- other electric parts

If the fan is of explosion-proof design, the electric installation has to meet the requirements of DIN EN 60079-14.
2.7 Marking, danger signs

Information directly arranged on the fan, e.g. sense of rotation arrows, information signs, markings or danger signs must be observed and kept in legible condition.

See an example of nameplate, danger signs and other markings positioning at the fan in chapter 7.7 Marking, information sign.

2.8 Qualified person

Qualified persons in terms of the § 2, clause 7 German Health and Safety at Work Regulations („Betriebssicherheitsverordnung BetrSichV“) is personnel that due to professional training, work experience and their current occupational activity has the necessary expert knowledge for testing the working devices.

Qualified persons only are allowed to carry out all works at the fan, at fan components, at the fan equipment, maintenance devices and electric components. Authorised personnel must also have sufficient knowledge about

- currently valid safety regulations,
- currently valid regulations for the prevention of accidents,
- directives and accepted engineering standards.

In addition, qualified personnel must:

- be authorized to carry out the necessary works
- be able to assess the works allocated to them with regard to dangers, be able to recognize possible dangers and to avoid them.
- have read these instructions prior to working

The person who is responsible for the safety of the system authorises the personnel to carry out the works.
2.9 Personal protective equipment

The operating company and the plant engineering company are responsible for the required protective measures on site like coverage, barriers or personal protective equipment.

Operating personnel are all staff members that are in charge of installation, mounting, operation, setting, maintenance, cleaning, repair and transport of machinery.

Carrying out dangerous works and activities requires wearing personal protective equipment in terms of EU Directive 89/689/EWG in order to avoid injuries or minimise the risk of injury that might not be prevented through other measures.

The minimum equipment includes:

- helmet
- eye protection
- foot guard
- hand guard
- ear protection
- reflective jacket
- appropriate working clothes.

In dependence of the type of the works or their dangerousness, wearing of further personal protective equipment and taking further safety precautions (e.g. fall protection) may become necessary.

When working on the fan, the following “Occupational Safety Regulations for safety and health at work (BG rules -BGR) are to be observed:

- „Wearing of protective clothing“ BGR 189
- „Wearing of foot and leg guards“ BGR 191
- „Use of head protection“ BGR 193
- „Use of ear protection“ BGR 194
- „Wearing of protective gloves“ BGR195
- „Use of protective equipment against falling“ BGR 198
2.10 Risk of slipping, tripping or falling

The operating company and the plant engineering company are responsible for necessary precautionary protective measures on site.

- Mark the transport aisles and keep them clear
- Sufficiently light the transport aisles and workplaces
- Remove unevenness of floor and installation sites
- Keep the working environment tidy and clean
- Treads must be anti-slip and undamaged
- Eliminate the slip danger (e.g. remove packed snow and black ice, keep the place in a dry condition)
- Apply fall protection (e.g. safety harness) when ladders are used to access the workplace
- There is the risk of falling from heights of more than 1 metre above the floor and in case of hollows or floor openings → install safety fence (e.g. guard railing, barriers), use fast devices instead of warning tape
- Ladders cannot serve as working places. It is not allowed to carry out certain works from the ladder, when for example the ladder lacks stability, the tool’s weight exceeds 10 kg, the area exposed to wind exceeds 1 m².
- Install working platforms at places that have to be maintained on a regular basis.
- Spilt working material is to be removed with suitable oil binding agent. Dispose of it in a safe manner consistent with all applicable regulations.
- Remove completely leaked grease and dispose of it properly and professionally in view of environmental protection requirements.

2.11 Measures in case of electrical power outage

In case of main and/or auxiliary electrical power failure, the fan has to be put into a safe condition. The control system must be designed so that the power breakdown or the control system itself does not result in a dangerous situation, neither at the time of the mains failure nor at the time when the energy is re-established or the control system is again ready for operation.

Additional measures for fans, whose handled gas temperature exceeds 80°C: In case the power fails, the hot handled gas must absolutely be prevented from flowing in at inlet of the fan and also from flowing back or backing up at discharge of the fan. Install proper shut-off devices including appropriate control systems on-site and keep them in an operable state.
3. Transport, Installation

3.1 General remarks

The fan and the equipment should only be transported and lifted at the provided marked lifting lugs. Load suspension devices as well as sling devices have to be in perfect condition and should only to be fastened at the provided lifting lugs.

Personnel that lifts and transports the fan must:
- have read the operating manual,
- have understood the content of the chapter transport, especially the safety regulations, the regulations for the prevention of accidents and the instructions for the transport of the fan,
- be familiar with the hoists, the required load suspension devices and the sling devices.

3.2 Safety instructions

The safety instructions for lifting and transport of the fan must be observed.

- Use hoists, load suspension devices and sling devices with sufficient load capacity only (for load / weight see fan data sheet or fan drawing)
- The angle of spread must not exceed 120° (see Figure 2).
- Do not knot steel wire ropes and chains.
- Do not tie ropes from fibres with knots.
- Do not distort the ropes.
- Untwist distorted ropes prior to lifting.
- Do not kink the ropes at wire rope clamps.
- Thimbles (cable eye stiffeners), rope eyes, suspension hooks and other lifting links must suspend freely on the lifting hook.
- Use edge guards when the slings are laid on sharp edges.
- Lift up the hook tackle when it is not used.
- Do not lift loads over people.

Observe the regulations for the prevention of accidents.

Auxiliary lifting lugs (e.g. at the motor) – if any – are suitable only for lifting the corresponding single component.

We recommend an installation performed by manufacturer’s skilled staff.
3.3 Regulations, standards

The valid regulations for the prevention of accidents and the accepted engineering standards apply to the lifting and transport of the fan.

- Regulations for the prevention of accidents (e.g. German BG regulations)
 - „Allgemeine Vorschriften“ (General Instructions) BGV A1
 - „Krane“ (Cranes) BGV D6 (VBG 9)
 - “Betreiben von Arbeitsmitteln“ BGR 500, Kap. 2.8 (Use of work equipment BRG 500 chap. 2)

- National standards (e.g. Standards of the German Institute for Standardisation)
 - „Hebezeuge, Lastaufnahmeeinrichtungen“ (Hoists, load suspension devices) DIN 15003
 - „Ösenhaken, Güteklasse 5“ (Eye hooks, quality class 5) DIN 7540
 - „Schäkel“ (Shackles) DIN 82101
3.3.1 Load suspension devices

- Fans are only to be lifted and transported with the appropriate hoists and means of transport (weight indication see fan data sheet or fan drawing).
- Fasten sling devices at the especially provided lifting lugs only.
- Do not damage components or fan when fastening sling devices.
- Do not fasten sling devices to the inlet, discharge, bearings, motor or base frame. This damages the fan and excludes and limits the liability of the manufacturer.
- Use sling devices of appropriate length. Pay attention to an even weight distribution. Attention: Transport of fan is only permitted when the weight is evenly distributed. The fan must be kept in a nearly horizontal position throughout complete fan lifting and transport activities.
- Observe the spread angle and the inclination angle (see Figure 2). The inclination angle α_N must not exceed 60°, that is to say the spread angle α_S must not exceed 120°.
- Wear personal protective equipment (see chapter 2.9)

![Diagram of load suspension devices](image)

Figure 2
3.4 Packing

The fan and the equipment are packed in the factory in accordance with
- the transport route,
- the storage at customer’s premises
- and / or customer’s requirements

If the impeller-shaft-bearing unit has not yet been assembled with the fan at the factory, these fans are prepared in the factory for the transport by covering the area of the bearing housings with weather protection foil.

Remove the foil covering only shortly before the first start-up and commissioning in order to maintain warranty claims.

Bearing housings that have already been assembled to the fan are protected by a cover hood made of galvanized steel sheet, where applicable.
Types of packing:

- Fan components mounted on wooden pallet with protection covering (welded in plastic foil).
- Fan components mounted on wooden pallet with protection covering (welded in plastic foil) and special bearing protection.
- Fan components mounted on wooden crate, protection covering (welded in plastic foil) and special bearing protection.
- Seaworthy packing in closed wooden case → Figure 3).

Fan components must only be transported with transport safety contrivances, with a protection covering (foil) and desiccants, so that no dirt and humidity can enter in the fan, in the anti-friction bearings or in the electric components.

The protection covering must be removed prior to that installation of the fan components.

Symbol legend:

- Keep dry
- This side up
- Glass - fragile
- Centre of gravity
- Fasten sling devices here

In case the fan or the equipment is packed and corrosion protected for an extended period of time at the factory, the separate „Instructions for Storage and Corrosion Protection of Radial Fans“ must be observed.
3.5 Transport

For lifting and transport of the fan components and the equipment observe

- 2.4 Safety regulations,
- 2.5 Regulations, standards,
- 3.3.1 Load suspension devices

- Sling devices, e.g.
 - wire ropes,
 - ropes from fibres,
 - steel cables

must be fixed at lifting lugs and suspension hooks.

- Unload the fan with suitable hoists only. Disregard of this instruction may cause the danger of crushing or shearing of parts of the body.

 Cautiously place the fan onto the floor or foundation to avoid damages to the fan, the bearings and other components.

- Observe permitted ground, floor, foundation or ceiling load capacities.

- After unloading of fan components and equipment
 - remove packing (depending on type of packing),
 - check fan and equipment for damages,
 - check accessories for completeness in accordance with the delivery note,
 - do not remove the cover foil and/or weather protection hood of the anti-friction bearings.

- Transport the fan components and the equipment by suitable hoists / means of transport to the installation location or storage place only.

- If the fan is transported to the installation location by vehicle:
 - lift the fan with suitable hoists onto the platform of the vehicle,
 - secure the fan against shifting and displacing by fastening belts.
3.5.1 Transport damages

Document any transport damage preferably with photographs and immediately report them to the forwarding agent, insurance company and manufacturer.

3.5.2 Intermediate storage

Please observe our separate “Instructions for Storage and Corrosion Protection” for proper storage of fan, bearings, shaft seal, coupling, drives, actuators, monitoring devices and other equipment.
3.6 Installation

3.6.1 General remarks

- **Design conditions**
 The fan and the equipment are designed, tested and delivered in accordance with the design conditions specified in the order. The specifications made in the order are documented in the fan data sheet. It is not permitted to deviate from the conditions shown in the fan data sheet (e.g. different handled gas).

 Unless otherwise agreed upon, the electric components of the machine are designed for a maximum ambient temperature of 40°C and an altitude of site up to 1000 m asl in accordance with the instructions of the German standard VDE0530.. Please observe the installation instructions in the operating manual of the motor producers.

- **Warranty**
 The warranty details refer to sing values and testing conditions in accordance with the applicable EN DIN standards and/or the valid standards and regulations. The system’s specific special characteristics and local conditions must be taken into account by the system designer or the project engineer when the order data are specified.

 It is essential to convert the data for the operating conditions in accordance with the existing local conditions.

3.6.2 Safety instructions

Installation works must exclusively be carried out by specialist personnel (see chapter 2.8)

It is recommended to request installation specialists of the manufacturer.
3.6.3 Foundation

A requirement for the installation of the fans is that foundations have been prepared in accordance with the foundation plan. Hardening times and shrinkage of the foundation have to be observed. Furthermore, ensure that the loading capacity of the foundation has been thoroughly examined and documented by the company that is consigned to carry out the construction work on-site.

Attention: The anchor rods may only be grouted in their anchor rod boxes in the foundation when the fan is completely aligned.

In case the individual fan parts are mounted and installed on foundations insufficient in load bearing capacity, the drive components like shaft, coupling and motor are exposed to the danger of misalignment. The consequent distortion and faulty alignment have negative effects on the operation of the fans and may result in a destruction of the drive units. In this context the mounting and maintenance/operating instructions are strictly to be observed.

3.6.4 Sealing

All sectional splitting flanges of the housing are to be sealed prior to screwing in accordance with the sealing instructions (→ see installation drawing)
3.6.5 Bolted connections

In principle, make sure for all screwed joints that there is sufficient excess length after the screw or nut has been tightened. The screw must project from the nut not less than the length of the screw diameter.

Always position the screw head so that a loosening or even loss of the screw can be immediately recognized. Always position the nut on top in case of vertical screwing.

Figure 4

Figure 5 Example bearing screwing

Figure 6 Example motor screwing

Figure 7 Example frame screwing
Exception from the prescribed screw heat position:
When flexible connections are screwed, the screw ends must always be turned away from the flexible connection.

Figure 8: representation of flexible connection with correct screwed connections (example)

Tighten all screw connections with the proper tightening moment, see chapter 9.1.1 Tightening moments for fastening screws.
3.6.6 Installation process

The complete installation and mounting of the fan is divided into the following work steps:

a. Check of foundation
b. Mounting of lower housing part
c. Mounting of motor pedestal
d. Precision alignment of pedestals to housing
e. Mounting of rotor
f. Mounting of the other housing parts and the shaft sealings
g. Mounting of motor coupling
h. Mounting of protection hoods and devices and of the equipment
i. Concluding mounting works
a. **Check of foundation**

We recommend using a two-dimensional laser for alignment and levelling.

a. 1. Prior to start of mounting and installation the construction site management should mark the centre of fan on the foundation. Clearly mark the centre lines in vertical and horizontal direction and determine the intersection point or points. Exactly and clearly mark the centre line and centre plane of the opening at inlet, the duct work at discharge and of the fan shaft. Based on a benchmark or any other pre-determined reference height within the plant the centre lines and centre planes have to be strictly observed when the fan is mounted and precisely aligned.

a. 2. The foundation has to be checked for evenness and dimension accuracy. The company performing the installation has to draw up a report on surveying referring to different metering points and hand in this report to those responsible for the direction of works prior to inserting the grouting mortar for the fan parts housing lower part, non-locating bearing pedestal and motor pedestal. The permission for grouting is given with the acceptance of the survey report by the management of the works. See next page for “Instructions for surveying of the foundations”.

a. 3. The areas of support for housing lower part, non-locating bearing pedestal and motor pedestal have to be aligned exactly in x- and y-direction (see Figure 10).

Figure 9

Example of support area of housing lower part
Instruction for foundation surveying

Figure 10
Front view foundation, representation of the radial deviation, referred to the total foundation dimensions

Figure 11
Top view foundation, representation of the axial parallelism of the foundation anchors

Figure 12
Fig. 10 Side view foundation block, representation of the horizontal deviation in radial direction and the parallelism of the foundation surfaces
b. **Mounting of the lower housing part**

b. 1. Hang the anchor rods for fastening of the lower housing part loosely in the anchor rod boxes of the foundation.

b. 2. Carefully place the lower housing part on the foundation and carefully insert the anchor rods in the bores of the housing claws.

b. 3. Shim the housing claws with alignment plates according to the given grouting height (see installation drawing and alignment plates distribution plan)

b. 4. Align and level the housing lower part in vertical and horizontal direction.

b. 5. Screw the anchor rod nuts and tighten them with the corresponding tightening moment (see installation drawing)

c. **Mounting of motor pedestal**

c. 1. Loosely insert the anchor rods for fastening of the motor pedestal to the anchor rod boxes of the foundation.

c. 2. Carefully place the motor pedestal on the foundation and carefully insert the anchor rods in the bores of the motor pedestal.

c. 3. Place thick alignment plates under the levelling screws of the motor pedestal (see Figure 8)

c. 4. Adjust the height of both pedestals with the levelling screws (see installation drawing)

Attention:
In case the fan has been pre-assembled at REITZ' workshops, mounting aids (flat steel bars) for first rough alignment are welded to the housing and the motor pedestal (see Figure 13)
c. 5. Line up the bores of the mounting aids and fix the aligned positions with bolts (see Figure 13).
 Attention: Choose bolt sizes according to bore diameters, bolts are not included in our scope of supply.

c. 6. For exact alignment observe the following work step “precision alignment of pedestals to housing”.

Figure 13

Figure 14

Figure 15
d. **Precision alignment of pedestals to housing**

d. 1. Make up an optical line between the vanishing points A and B (see Figure 16) with the help of a laser or an alignment telescope. Determine the vanishing points A and B by exactly ascertaining the central points of the shaft passages in the fan housing. The deviations of the optical line from the ideal centre line must not exceed 2mm at most in horizontal and vertical direction.

![Figure 16](image)

Figure 16
Representation of the reticle and vanishing points

d. 2. Install the reticle on the motor pedestal (receiver).

d. 3. Remove the bolts from the mounting aids and align the reticle by leveling the motor pedestal to the optical line.
d. 4. Check the bearing connection surfaces for cleanliness and evenness with the help of a mason or straight-edge. Observe the alignment tolerances; see also instruction on the mounting drawing.

d. 5. Insert multilayer shims and flat steel bars under the motor pedestal (see also distribution of alignment sheets).
Attention:
Always place alignment plates and shims centrally under the bearing points of the motor pedestal as well as on both sides of and close to the anchor rods to the full height with a corresponding number of alignments plates, shims and flat steel bars (see Figure 15).

d. 6. Screw the nuts to all anchor rods and tighten them with the corresponding tightening moment (M24 with 333°Nm and M30 with 680Nm) unless there are other indications in the mounting drawing.

d. 7. Check the alignment and, if necessary. Loosen the screwing and re-align and re-tighten the nuts with the proper tightening moment.

d. 8. Check again the bearing connection surfaces for keeping the tolerances with regard to descending gradient and evenness.

d. 9. Only insert the rotor when all positions and surfaces are within the given shape and positional tolerances.
e. **Mounting of rotor**

The rotor consists of impeller, shaft, bearings, heat flinger and coupling half (see Figure 17).

![Exemplary representation of a rotor](image.png)

Figure 17

1. Dismantle the heat flinger to facilitate mounting of rotor
2. Carefully insert the rotor in the fan housing lower part (truly axial and central to the housing).

Attention:
When lifting and placing the rotor with the help of a carrying beam or any other comparable lifting device, always observe the position of the centre-of-gravity. The rotor must always be transported in a horizontal position.
e. 3. Line up the bores of the bearing housings exactly to the bores of the bearing surfaces of the motor pedestal.
Attention:
See the mounting drawing for the axial play in the non-locating bearing. The operating temperature or a temperature increase of the handled gas may lead to the indicated lengthening of the shaft. The change in the shaft length has to be compensated in the non-locating bearing, which therefore must be set accordingly (see mounting drawing).

e. 4. Insert the bearing fastening screws and tighten them crosswise manually.

e. 5. Turn the rotor manually, subsequently insert the bearing housing pins and tighten the bearing fastening screws. The tightening moments are to be observed (see mounting drawing).

e. 6. Check whether the rotor can still be turned manually.

e. 7. Fill both bearings with the proper quantity of operating oil (also see chapter 7.3 Bearings)
f. Mounting of further housing parts and the shaft seals

f. 1. Seal the sectional splitting flanges according to the sealing instructions on the mounting drawing.

f. 2. Carefully place the upper housing part(s) on the lower housing part.
 Attention:
 Line up the bores of the housing splitting flanges to each other and ensure that this does not cause damage to the sealing. For aligning the housing parts, bolts and centring pins may be inserted in one or two bores of the sectional splitting flanges to fix the position prior to lowering the upper parts.

f. 3. Fix the housing parts with some screw connections starting in the areas of the shaft seals.

f. 4. Align the inlet piece to the impeller nozzle observing the concentricity and check the gap all over the circumference.
 Attention:
 The admissible gap width according to the mounting drawing must strictly adhered to. The impeller nozzle must not rub against the inlet cone.

f. 5. Align the shaft seal centrically to the shaft and screw them to the suction box.
 Attention:
 The mounted sealing must not cramp the shaft.
g. Mounting of motor and coupling

g. 1. Mount the motor-end coupling half on the shaft journal of the drive motor.

g. 2. Carefully place the drive motor on the motor pedestal. Attention:
Line all four motor feet fastenings with alignment plates of stainless steel (see mounting drawing).

g. 3. Align the coupling (see chapter 3.6.7 Alignment of the shafts and mounting drawing). See fan data sheet or mounting drawing for the coupling size. Attention:
For exact coupling alignment, it might be necessary to use additional alignment plates or to replace the original alignment plate so 1mm thickness by thinner plates.

g. 4. Check the alignment (see operating manual of the coupling producer) and tighten the screws with the tightening moments that are indicated by the coupling producer).

g. 5. If any, mount and install the stop brake according to the supplier's mounting instructions (see mounting drawing, too). If the brake is actuated pneumatically, connect it to the compressed air supply and to the electric power supply.

g. 6. Place the heat flinger to the prescribed position on the shaft (see mounting drawing). It might be necessary to readjust their position on the shaft for lack of space. Attention:
Observe the axial distances and make sure that the heat flinger does not rub at any place.
h. Mounting of protection devices and equipment

h. 1. If any, mount the monitoring devices like temperature probe and vibration meter (one of each per bearing housing) and digital speed indicator and connect them to the electric power supply.
 Attention:
 Electric connections must exclusively be carried out by professional electricians (see chapter 3.7 Connections)

h. 2. Mount the protection guards and covers and make sure that there is no contact to rotating parts. In particular the guards are: protection covers for coupling, heat flingers and – if any – weather hoods for bearings and motor (see mounting drawing).

h. 3. Mount any further equipment (see mounting drawing) including, but not limited to:
 - louvre dampers with fitted actuators, if so
 - actuators for louvre dampers incl. connection rod

h. 4. Do not mount the flexible connections and chutes before the duct work has been completed.
i. Completion of mounting and installation

i. 1. Remove all mounting accessories like ladders, scaffolds, planks and carrying straps from the fan interior.

i. 2. Take likewise away all cleaning rags, devices and tools from the fan and the exterior mounting area.

i. 3. Check the rotor afterwards for free running. Rubbing of parts or impeller nozzles must not be heard.

i. 4. All screwed connections must be examined and have to be tightened with the corresponding tightening moment (see mounting drawing).

i. 5. Grout the anchor rod boxes, in which the anchor rods have previously been inserted.

i. 6. Connect the electric power supply to the motor observing the prescriptions of the motor producer and the utility company.

Attention:
These electric works must exclusively be carried out by professional electricians (see chapter 3.7 Connections)
Figure 18

Example of a completely mounted fan, ready for operation
3.6.7 Alignment of the shafts

After mounting on the foundation the fan must be aligned. Use appropriate measuring instruments, tools, jack screws and shims for this work. During transport motor and bearing can get displaced.

- If the fan is installed within chemically aggressive atmosphere or outdoor → use shims made of rustproof material.

The shafts of fan and motor must align. Therefore, check the shafting for proper alignment prior to the first start-up and realign it if necessary.

- Manufacturer’s skilled service staff has to be requested for alignment.
- Remove protection cover of coupling (fan bearings / motor).
- Check the alignment of the motor to the bearings with appropriate measuring tools.
 - During alignment, the angular offset and the radial offset of the shaft ends must be kept as small as possible.
 - Permissible offset → table „Standard values for permissible shaft offsets and gap widths“.
 - Align the coupling in two opposite, vertically arranged, axial planes.
 - Check the radial offset (ΔK_r) with a ruler. Check the angular offset (ΔK_w) with a thickness gauge (feeler gauge).

- The accuracy of alignment can be improved by use of a dial gauge respectively by use of a laser optical sensor.

Fig 19 → Permissible offset
The maximum permitted offsets indicated in the table are general standard values.

Special applications with high demands regarding the quiet running or with higher speeds can require accuracies of alignment of ≤ 0,1 mm for each of the three offset levels.

Size of coupling N-Eupex Typ A,B

<table>
<thead>
<tr>
<th>n min⁻¹</th>
<th>80</th>
<th>95</th>
<th>110</th>
<th>125</th>
<th>140</th>
<th>180</th>
<th>200</th>
<th>225</th>
<th>250</th>
<th>280</th>
<th>315</th>
<th>350</th>
<th>400</th>
<th>440</th>
</tr>
</thead>
<tbody>
<tr>
<td>axial clearance s₁ mm</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>7.5</td>
</tr>
<tr>
<td>axial offset ΔKₐ mm</td>
<td>± 1</td>
<td>± 1</td>
<td>± 1</td>
<td>± 1</td>
<td>± 2</td>
</tr>
<tr>
<td>radial offset ΔKᵣ mm</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>angular offset ΔKₗ Grad</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Size of coupling ELCO Typ N / W

<table>
<thead>
<tr>
<th>n min⁻¹</th>
<th>98</th>
<th>113</th>
<th>123</th>
<th>129</th>
<th>149</th>
<th>161</th>
<th>184</th>
<th>210</th>
<th>214</th>
<th>215</th>
<th>222</th>
<th>228</th>
<th>231</th>
<th>237</th>
</tr>
</thead>
<tbody>
<tr>
<td>axial clearance s₁ mm</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>axial offset ΔKₐ mm</td>
<td>+2</td>
</tr>
<tr>
<td>radial offset ΔKᵣ mm</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.25</td>
<td>0.25</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>angular offset ΔKₗ Grad</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Size of coupling RUPEX RWN/RWS

<table>
<thead>
<tr>
<th>n min⁻¹</th>
<th>162</th>
<th>178</th>
<th>198</th>
<th>228</th>
<th>252</th>
<th>285</th>
<th>320</th>
<th>360</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>560</th>
<th>630</th>
<th>710</th>
</tr>
</thead>
<tbody>
<tr>
<td>axial clearance s₁ mm</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>7</td>
</tr>
<tr>
<td>axial offset ΔKₐ mm</td>
<td>+2</td>
</tr>
<tr>
<td>radial offset ΔKᵣ mm</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.25</td>
<td>0.25</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>angular offset ΔKₗ Grad</td>
<td>0.1</td>
</tr>
</tbody>
</table>

If a special coupling is used, refer to the instructions specified in the annex.
Angular and radial offset can occur simultaneously. The total of these two offsets must not exceed the maximum permissible value of the angular offset or the radial offset.

$$(\Delta K_r + s_1) \text{ existing} \leq \Delta K_r \text{ and/or } s_1$$

- If the determined measurements are within the tolerance, check the fastening screws of the motor for tight connection.
- If the determined measurements exceed the tolerance, re-adjust the fan.
- Upon completion of the alignment the motor fastening screws must be screwed down with the relevant tightening moment (\(\rightarrow\) chapter 9.1.1)
3.7 Connections

3.7.1 General remarks

The connection of the electric components of the fan must be carried out in accordance with the following regulations, as amended:

- Regulations issued by the local electric supply company (e.g. German EVU),
- national associations for electronic regulations (e.g. EN DIN VDE regulations: VDE – German Association for Electrical, Electronic & Information Technologies.)
- Installation and mounting instructions in the operating manual of the motor producer.

3.7.2 Safety instructions

Works on the fan or the equipment must exclusively be carried out by specialist personnel, that due to professional training, experiences and instructions has sufficient knowledge about:

- Safety regulations,
- regulations for prevention of accidents,
- directives and accepted engineering standards (e.g. VDE directives, DIN EN standards)

The specialist personnel must:

- be able to assess the works allocated to them, to recognize possible dangers and to avoid them,
- be authorized by the person who is responsible for the safety of the system to carry out the required works and tasks.

All electric works on the components of the fan must exclusively be carried out by professional electricians that are authorized by definition regarding professionals (e.g. German definition DIN VDE 0105 and IEC 364). The electricians must observe the following regulations and instructions, as amended:

- EN DIN VDE-regulations (e.g. Germany),
- IEC-regulations (International Electrotechnical Association),
- Safety instructions,
- Transport, installation and maintenance instructions

Professional electricians are specialists, who due to professional training, experiences and instructions have knowledge about valid appropriate standards, regulations and regulations for prevention of accidents.

Furthermore they must be able to assess the works allocated to them and to recognize and to eliminate possible dangers.

The professional electricians must be authorized by the person who is responsible for the safety of the system to carry out the required works and tasks.
3.7.3 Ducting of fan

Distortions of the fan at the connections caused by the ductwork are not permitted. Distortions cause alterations, e.g. the gap at the nozzle decreases at one side which might lead to rubbing in the inlet.

- Remove the transport covers from the connections.
- Move the duct work to be connected to the inlet and discharge openings of the fan without causing offsets between the ducts and openings.
- Connect duct and conduits to the fan free-of-load.
3.7.4 Check of clearances

Prior to the first commissioning of the fan, the radial clearance between inlet cone and impeller nozzle must be checked and recorded pursuant to the following instructions. We cannot exclude possible shifts resulting from the transport between inlet cone and impeller. The fan can only be operated safely and trouble-free when the minimum clearance is observed. Any warranty claim will be invalidated if the minimum clearance is not maintained.

There are two different impeller designs:
- impeller with shroud (Figure 20)
 incl. representation of the check points ① to ⑧

Figure 20

- unshrouded impeller (Figure 21)
 * number of check points according to the number of blades

Figure 21

In dependence on impeller design start to check the gap in case of:
- impeller with shroud:
 check the gap at eight check points (see Figure 20)
- unshrouded impeller:
 number of check points according to the number of the blades (see Figure 21)

Then turn the impeller by 90° and again check the gap at all check points. Repeat this process three times.

For fans of earlier design and for replacement deliveries of impeller or unshrouded impeller, the clearance dimensions can differ from the values given in the table.
3.7.4.1 Check of clearance for impeller with shroud

The minimum radial clearance must amount to 3 mm at least.
Take further clearance measures from Table 2 minimum clearance table.

<table>
<thead>
<tr>
<th>DN</th>
<th>D1</th>
<th>h</th>
<th>Standard</th>
<th>Ex</th>
<th>Atex</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>5</td>
<td>sN</td>
<td>sV</td>
<td>sNA/sVA</td>
</tr>
<tr>
<td>112</td>
<td>112</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>126</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>140</td>
<td>141</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>160</td>
<td>158</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>180</td>
<td>178</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>200</td>
<td>199</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>224</td>
<td>224</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>250</td>
<td>251</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>280</td>
<td>282</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>315</td>
<td>316</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>355</td>
<td>355</td>
<td>11</td>
<td>3.5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>400</td>
<td>398</td>
<td>12</td>
<td>3.5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>450</td>
<td>447</td>
<td>14</td>
<td>3.5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>500</td>
<td>501</td>
<td>16</td>
<td>3.5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>560</td>
<td>562</td>
<td>18</td>
<td>3.5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>630</td>
<td>631</td>
<td>20</td>
<td>3.5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>710</td>
<td>708</td>
<td>22</td>
<td>3.5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>800</td>
<td>794</td>
<td>25</td>
<td>3.5</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>900</td>
<td>891</td>
<td>28</td>
<td>3.5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>48</td>
<td>3.5</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1120</td>
<td>1120</td>
<td>35</td>
<td>3.5</td>
<td>7</td>
<td>11.5</td>
</tr>
<tr>
<td>1250</td>
<td>1265</td>
<td>25</td>
<td>4</td>
<td>8</td>
<td>12.5</td>
</tr>
<tr>
<td>1400</td>
<td>1403</td>
<td>35</td>
<td>4</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>1600</td>
<td>1575</td>
<td>40</td>
<td>4</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>1800</td>
<td>1768</td>
<td>40</td>
<td>4</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>2000</td>
<td>1985</td>
<td>45</td>
<td>4</td>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 22 Representation of different installation situation: impeller „inlet cone extends into the impeller nozzle“ and „nozzle with gap“
3.7.4.2 Check of clearance for unshrouded impeller

The minimum axial clearance must amount to 10 at least. Take further clearance measures from Table 3 minimum clearance table.

<table>
<thead>
<tr>
<th>DN</th>
<th>D1</th>
<th>Standard</th>
<th>Atex</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>112</td>
<td>112</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>125</td>
<td>126</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>140</td>
<td>141</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>160</td>
<td>158</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>180</td>
<td>178</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>200</td>
<td>199</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>224</td>
<td>224</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>250</td>
<td>251</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>280</td>
<td>282</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>315</td>
<td>316</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>355</td>
<td>355</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>400</td>
<td>398</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>450</td>
<td>447</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>500</td>
<td>501</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>560</td>
<td>562</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>630</td>
<td>631</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>710</td>
<td>708</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>800</td>
<td>794</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>900</td>
<td>891</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1120</td>
<td>1120</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>1250</td>
<td>1265</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>1400</td>
<td>1403</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>1600</td>
<td>1575</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>1800</td>
<td>1768</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2000</td>
<td>1985</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 23 representation of installation situation unshrouded impeller

Table 3 minimum clearance table
3.7.5 Use of flexible connections

Flexible connections are intended to prevent the transmission of structure-borne sound and vibration forces. They are also used to reduce/prevent the transmission of forces from the duct work to the fan. Furthermore alignment errors of the ducts are reduced. The flexible connections should always be arranged directly at the fan connection flange (except when a damper is mounted on the fan).

If the fan is mounted on anti-vibration mounts, flexible connections must be provided at the inlet and discharge on principle.

3.7.5.1 Installation of flexible connections

Do not install flexible connections before completion of the duct work.

Flexible connections with hose clamps:
Pull flexible hose-type connections on the duct cautiously and fix them with hose clamps.

Flexible connection with back flanges:
Pull flanged flexible connections cautiously (inclusive back flanges) over the chute and arrange them between the fastening flanges. Apply sealing or sealing cord under the chute and fasten it by screw. All fastening screws must be tightened equally and – if possible – crosswise.
For tightening moments see annex (→ chapter 9.1.1).

3.7.6 Use of chutes

Depending on arrangement and load, chutes must be provided if:

- temperatures exceed 90 °C,
- velocities of flow exceed 30 m/s,
- pressure loads exceed 1000 daPa,
- aggressive or abrasive media are conveyed,
- the flexible connection is arranged at the inlet (as the flexible connection is supported by the chute against the existing negative pressure and does not reduce the inlet cross section of the fan),
- there are high noise level demands (the chute acts as a connected duct with corresponding attenuation values).
- Fans working with potentially explosive atmosphere should always be equipped with chutes for flexible connections. The chutes have to operate in the direction of flow.
- Always observe the flow direction when chutes are installed (see arrow in Figure 24 representation chute and direction of flow)

Figure 24 representation of chute and direction of flow
3.7.7 Electric connection conditions

Connect the power supply lead according to the valid regulations of the local electric supply company and observe in addition:
- the EN DIN VDE-regulations (e.g. Germany),
- the safety regulations,
- the regulations for the prevention of accidents.

As far as the low-voltage line is concerned, use for example:
- earthing wire acc. DIN VDE 0255,
- plastic cable acc. DIN VDE 0273,
- cable lugs acc. DIN 46235
- terminal screws

and observe the instructions of the cable and sealing end manufacturers.

The cross section of the power supply lead depends on the type of cabling, rated voltage and rated power of the machine.

Cable ends with pressed-on cable lugs must be arranged and connected in accordance with the connecting plan that is to be found in the terminal box cover.

The power supply lead and the cable ends must not exert any lateral and/or torsional power on the terminal studs during or after the cable connecting work.

In case the fan is provided with electric protection devices (e.g. position switch), adhere to the instructions of DIN EN 60204-1 Safety of machinery – Electrical equipment of machines.

3.7.7.1 Earthing

If the fan and/or its equipment are provided with earthing clamps, connect the system’s earthing to them.
3.7.7.2 Monitoring devices

The fan can be equipped with vibration monitoring, bearing condition monitoring and bearing temperature monitoring. Furthermore, the temperature probes can be installed for monitoring the temperature of the handled gas. Additional monitoring devices are described in separate operating manuals.

Connections of the monitoring devices must be connected in accordance with the detailed wiring diagram.

Please observe the instructions in the annex of this operating manual.

The annex shows the maximum warning and disconnecting values.

- Chapter 9.1.2 Limiting values vibrations
- Chapter 9.1.3 Limiting values bearing temperatures

3.7.8 Seal connection

The shaft seal for a sealing medium has a G ½” connection for a grease injector or a barrier gas connection provided on-site by customer.

![Figure 26](image)

Figure 26 – shaft seal with grease seal

In general, the shaft seals are continuously to be provided with the proper quantity of grease or barrier gas that corresponds to the operational mode. Disregarding this requirement leads to an increased risk of ignition and subsequently to an increased risk of injury to persons and severe property damage.

Barrier gas conduits with pressure reducer and pressure gauges are available on request from the manufacturer.
4. Start-up

4.1 General remarks

Perform a start-up after installation and after each repair. Check for compliance of the finished installation and present operating conditions with the specified data of the fan data sheet (→ chapter 1.2).

The specialist personnel must be authorized by the person who is responsible for the safety of the system to carry out the required works and tasks for the start-up. (see chapter 2, Safety instructions).

4.2 Mechanical check

- Check all external fastening screws for tightness.
- Check impeller for unblocked run (rotate manually once)
 Attention: The impeller must not rub at the inlet.
- Remove possibly existing foreign substances from the fan housing.
- Check all screwed connections of the duct connections for tightness.
- Close the inspection openings properly.
- Remove transport securing devices, if any.
 ATTENTION: If the fan is provided with a transport safety device (e.g. shaft support, etc.), the provisions for transport have to be removed before the fan is start-up. In any case, it must be easy to turn the impeller.

4.2.1 Alignment

Check and document the alignment of the motor to the fan (→ chapter 3.6.7 Alignment of the shafts).
4.3 Electric check

- Check the operating voltage.
- Check for proper condition of earthing connections and equipotential bonding connections.

The electric connections inside the switching cabinet must comply with the regulations of the local power supply company and the valid regulations (e.g. German standard DIN VDE 0105) as well as the instructions of the producers of the drive motor and auxiliary motors.

4.3.1 Monitoring devices / auxiliary equipment

- Check the connections and cabling of the monitoring devices and auxiliary equipment for compliance with the detailed wiring diagram (→ switch cabinet).
- Switch on measuring systems and check connected monitoring devices for functionality.
4.3.2 Check of sense of rotation

- Manually check the impeller for unblocked run.
- Switch on the motor and check the sense of rotation for compliance with the sense of rotation arrow arranged at the back of the fan.
- Motor sense of rotation must be the same as the fan’s sense of rotation (see Figure 27)
- Disconnect the fan.
- The following motor connection results from the sense of rotation:

<table>
<thead>
<tr>
<th>Connection L1, L2, L3</th>
<th>Sense of rotation facing the drive side (motor shaft journal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1 - V1 - W1</td>
<td>clockwise</td>
</tr>
<tr>
<td>W1 - V1 - U1</td>
<td>counterclockwise</td>
</tr>
</tbody>
</table>

When checking the sense of rotation, only the assigned inspector is permitted to be present within the danger area of the fan. Switch on motor and check sense of rotation (observe valid regulations, e.g. DIN VDE 0105).

- Ensure that the motor is switched dead.
- Secure against restart and mark with relevant information sign.
- Check for and ensure dead condition.
- Connect to earth and short-circuit.
- Cover or secure by barrier adjacent alive parts.

Figure 27 → check of sense of rotation

4.3.3 Commutating wrong sense of rotation

If two of the existing connecting lines are interchanged, the sense of rotation is altered. In this case the connecting cables must be arranged inside the terminal box in accordance with the terminal connecting plan shown above and the sense of rotation.
4.4 Start-up of fan

4.4.1 General remarks

Check and inspect the following items prior to start-up:

- Is it possible to switch on the fan?
- Has the fan been checked mechanically and electrically and do all results show faultless conditions?
- Are all connections / ductworks installed professionally?
- Are the air intake openings of the motor free and uncovered?
- Has the clearance been checked? (see chapter 3.7.4),
- Are the safety devices in active and correct position?
- Are the power units, switchgears, monitoring devices and the cable cross sections designed and checked by the project engineer / operating company regarding the type of starting, starting time and peak load?
- If the fan is provided with a transport safety device: Has the transport safety device been removed?

4.4.2 Safety instructions

- The start-up must exclusively be carried out by specialist personnel that is appointed by the person who is responsible for the system.
- Observe the valid safety instructions (e.g. DIN VDE 0105)
- Before switching on the fan:
 - finish all works on the fan,
 - install all covers and safety devices,
 - reverse the protection measures that were carried out for the works on the fan (earthing and short-circuit of the connecting cable, securing against restart, etc).

The screws of safety devices for rotating parts are provided with retentions. The screw retentions ensure that the screws will remain on the safety devices if it is dismantled. Care must be taken when mounting and dismantling the safety devices in order to maintain the serviceability of the screw retentions.
4.4.3 Switching on of the fan

It is only permitted to start-up the fan, if a sufficient acceleration torque is available, covering the complete range of acceleration up to the nominal speed.

Start-up the fan with closed damper.

In case the fan is of gastight design, check the housing, the shaft seal and the connections at inlet and discharge for tightness.

Switch-on fan.

Monitor the following values and document them:

- During start-up
 - current consumption,
 - voltage,
 - vibrations (quiet running),
 - noises.

- After start-up
 - current / voltage,
 - vibrations,
 - noises,
 - bearing temperatures
 - temperature increase at fan housing due to compression of handled gas.

After start-up charge the fan.

Monitor the following values of the fan and document them:

- current consumption / voltage,
- vibrations (quiet running),
- noises,
- bearing temperatures.

The fan must be disconnected, when

- specified values are exceeded
 (see chapter 1.2 Fan data sheet)
- unacceptable vibration values or increased noise levels of the fan occur,
- limit values are exceeded
 (see chapter 9.1.2 Limiting values vibrations)

If the above mentioned malfunctions occur, contact the service specialists of the manufacturer.
4.4.3.1 Direct starting

Direct starting (delta starting) of the motor does not only cause a high starting torque but also a high starting current. During starting the starting current is 6 to 8 times higher than the rated current (depending on the type of rotor). Account for this high consumption of current when selecting the fuses.

4.4.3.2 Star-delta-starting

During star-delta starting the drive motor only provides 1/3 of the acceleration torque when star connected. From a certain speed onwards, the load moment of the fan exceeds the acceleration torque of the motor. The motor stops to accelerate. In this state, the motor must be switched to delta connection. The resulting peak load is significantly lower than that of direct fan starting.

The connecting frequency of the electric motors is limited to maximum six starting processes per hour. For this the instructions of the motor manufacturers must be observed.

4.4.3.3 Prevention of high negative torque impacts during test run

On principle, the fan is only to be restarted after the total standstill of the impeller. This prevents torque impacts which can occur when the rotor is still running (even slightly) at the time of restart. The torque impacts can cause significant damages on components (rotor, bearings and coupling).

4.4.3.4 Fan operation with variable speed control

If the fan has a variable speed control, observe the instructions in 5.6 Automatic operation of fan.
4.4.4 Disconnecting of fan

- Disconnection of fan → open power switch
- Let the fan coast brakeless.

Observe valid regulations, e.g. DIN VDE 0105.

When working on live parts, observe the following:

- Ensure that the fan is switched dead.
- Secure against restart and mark with relevant information sign.
- Check for and ensure dead condition.
- Connect to earth and short-circuit.
- Cover or secure by barrier adjacent alive parts.
5. Operation, Operating

5.1 General remarks

Specialist personnel only is permitted to start and disconnect the fan. The specialist personnel must be appointed by the person who is responsible for the system.

Furthermore all instructions concerning the factory and the operation / operating of the operating company must be observed.

5.2 Safety instructions

Read the operating manual of the fan and the motor and observe the instructions and information.

5.3 Operational performance of the fan

During operation the fan must be checked regularly for:
- current consumption and voltage (values → rating plate),
- vibrations and noises (especially for rubbing noises) of the fan, (vibration monitoring → chapter 9.1.2 Limiting values vibrations),
- bearing temperatures by installed measuring device (warning– / disconnecting temperatures → chapter 9.1.3 Limiting values bearing temperatures),
- condition of the shaft sealing.

Check at fan standstill:
- alignment of the shaft offsets and clearances of the coupling (→ chapter 3.6.7 Alignment of the shafts)

Disconnect the fan when
- the rated values for current, voltage and temperature are exceeded,
- vibrations or increased noise levels occur on the fan,
- the axial clearance of the coupling is exceeded,
- the shaft sealing leaks.
5.4 Disconnecting of fan

Disconnect the fan by opening the power switch

Let the fan coast brakeless.

Observe the valid regulations, e.g. German DIN VDE 0105.

When working on live parts, observe the following:

- Ensure that the fan is switched dead.
- Secure against restart and mark with relevant information sign.
- Check for and ensure dead condition.
- Connect to earth and short-circuit.
- Cover or secure by barrier adjacent live parts.

5.5 Emergency stop of fan

Automatic or semi-automatic operation

If the fan is installed in a ventilation system and is operated by automatic or semi-automatic control, it must be ensured that the fan can safely coast down to a standstill in case of an emergency shut-down. The fan itself is not provided with an emergency stop or power-off switch. The switch-off of the fan in case of emergency must be provided for in the control of the complete system. The operating company of the plant is responsible for the proper setting of the system control.

In case the fan is provided with monitoring devices, the emergency cut-off must be released as soon as the corresponding limit values have been achieved.

Possible parameter for maintenance are:

- bearing temperatures
- bearing vibrations
- condition of anti-friction bearings
- wear and tear of anti-friction bearings
- oil temperature
- oil fill level
- speed (fan and motor)
- sense of rotation
- temperature of handled gas
We differentiate between the following limit values:
- **prewarning**: further operation subject to constant monitoring
- **main alarm**: the fan must be disconnected immediately!

Unless otherwise prescribed by the motor manufacturer, the limit values for prewarning and disconnection at main alarm, that are indicated in chapter 9.1.2 Grenzwerte Schwingungen und Kapitel 9.1.3 Grenzwerte Lagertemperaturen are to be observed.

Observe the following instructions about the monitoring devices to avoid injury to persons, property damage and environmental harm:
- ensure proper functioning of the readings recorder, of the transmission electronics and of the evaluation unit
- immediately replace damaged or components that are no longer serviceable
- properly connect the maintenance devices to the control panel and carry out a functioning test
- set the measuring value accurateness and – tolerances in accordance with the limit values for pre-warning and disconnection
- select reasonable scaling dimensions adapted to the measuring range within the measuring values transmission chain, to ensure the highest possible resolution and to avoid measuring results falsification
- pre-warning must be shown at the control panel by flash on the display or light or acoustic signal
- main alarm must be shown at the control panel by flash on the display or light or acoustic signal and the fan must immediately be disconnected.
Carry out the following measures, when the limit values for prewarning and main alarm are achieved:

- Check the facts and find out the reasons
- Check the readings recorder, the sensor system, the evaluation units, etc.
- Immediately replace faulty sensors, reading recorders, etc.
- Check the impeller for sticking material, wear and tear, deformations, etc. and clean the impeller in case of stickings and replace it in case of wear and tear and deformations.
- Check the bearings for oil level (at oil-lubricated bearings) or grease quantity (at grease-lubricated bearings)
- Check the anti-friction bearings for wear and tear and replace them if necessary
- Do not re-set the signal until the cause of the limit exceeding has been clearly identified

Attention:
Only the person or company responsible for the operation of the plant (operating company) may re-set the main alarm.

- Re-start the fan and check the machine’s behaviour
- If the limit values for prewarning or main alarm (disconnection) are again exceed, carry out the described measures anew and immediately inform Konrad Reitz Ventilatoren GmbH & Co. KG

The monitoring devices serve to detect deviations from normal operation at an early stage and therefore to avoid damage to machine parts (e.g. bearings, impeller, shaft sealing, couplings). Damages can be early determined with proper diagnostic units and replacement of parts can be easily scheduled.
5.6 Automatic operation of fan

5.6.1 Variable speed control with frequency converter

During automatic operation it must be ensured that the speed of the fan shaft does not oscillate around a preset value (periodic control behaviour) in order to avoid probable damage to the power train.

In addition, there must be enough time for the fan to start up until the operating or maximum speed is achieved - to coast down from operating speed to standstill - to change the operating point and hence the fan speed.

In order to avoid considerable loads, in particular speed accelerations and speed reductions in short periods of time, the variable speed control with frequency converter has to be set as “slow-reacting” as possible, so that symptoms of fatigue of impeller, shaft, coupling, etc. will be minimised. The additional alternating load that is generated by the control actions will be almost avoided, if the speed change velocities indicated below are observed (ramp times of the frequency converter).

The following classification applies (recommended values). The ramp time may not fall below the given values.

<table>
<thead>
<tr>
<th>fan speed: [min⁻¹]</th>
<th>ramp time: [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>38</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
</tr>
<tr>
<td>1200</td>
<td>60</td>
</tr>
<tr>
<td>1500</td>
<td>75</td>
</tr>
<tr>
<td>1800</td>
<td>90</td>
</tr>
<tr>
<td>3000</td>
<td>150</td>
</tr>
<tr>
<td>3600</td>
<td>180</td>
</tr>
</tbody>
</table>

Table: recommended values for ramp times

Irrespective the above, always consider the existing conditions of the individual application case (mass moment inertia of the impeller and the complete rotating unit, start up and acceleration behaviour of the drive, current consumption, process-friendly control behaviour, etc.)
5.6.2 Natural frequency of the impeller

Resonances cannot be excluded since each fan component, in particular the impeller, has a natural frequency that can be excited at certain fan speeds.

We design and construct our fans so that resonances generally do not occur in operation at constant rated speed.

If the fan is variable speed controlled, each change in speed (frequency) can result in an excitation. Additional excitations through the frequency converter control are also possible. If natural frequencies of the components lie within the speed range of the fan, these must be skipped when the variable seed control is parameterised.

5.6.3 Parameterising the variable speed control

If the fan including the variable speed control has been delivered by Reitz, the factory-provided parameterisation has to be kept. Any changes of the originally supplied parameterisation will invalidate any claim on our warranty. Changes in or improper parameterisation may lead to

- operation behaviour that is not free-from-vibration as per DIN IS 10816-3
- fatigue failure of impeller
- resonance vibrations on various components
- damage of coupling and other components of the power train because the fan is started-up and decelerated too quickly or due to too frequent changes in operating points.

5.6.4 Speed control range

We recommend not falling below a speed control range of 1:10 in order to maintain proper greasing of the bearing. In particular, torsional vibrations of the power train may arise in the range of 5 Hz output frequency of the variable speed control. This range is therefore to be provided.

In case of oil-lubricated single housing bearings, please also observe chapter 5.7 “Minimum speeds for oil-lubricated bearings in single bearing housings”.

We recommend having the parameterisation and commissioning done by a REITZ service technician.
5.7 Minimum speeds for oil-lubricated bearings in single bearing housings

The following applies for oil-lubricated bearings in single bearing housings:

Oil-lubricated bearings with oil-supply ring require a minimum speed to ensure perfect oil delivery within the bearing housing. This is particularly to be observed where a fan is controlled by a variable speed control (frequency converter). Check the control range in accordance with the following table and do not fall below the specified minimum speeds. The minimum speeds also must not fall short of the indicated minimum speeds when a trial spin drive is used.

If the fan is provided with a backstop, please observe the corresponding instructions of the manufacturer of the backstop with regard to the minimum speeds, if necessary, request the instructions from REITZ.

<table>
<thead>
<tr>
<th>bearing type</th>
<th>minimum speed in min-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNOE 218</td>
<td>390</td>
</tr>
<tr>
<td>SNOE 220</td>
<td>350</td>
</tr>
<tr>
<td>SNOE 222</td>
<td>315</td>
</tr>
<tr>
<td>SNOE 224</td>
<td>290</td>
</tr>
<tr>
<td>SNOE 226</td>
<td>270</td>
</tr>
<tr>
<td>SNOE 228</td>
<td>250</td>
</tr>
<tr>
<td>SNOE 230</td>
<td>230</td>
</tr>
<tr>
<td>SNOE 232</td>
<td>220</td>
</tr>
<tr>
<td>SNOE 234</td>
<td>200</td>
</tr>
<tr>
<td>SNOE 236</td>
<td>195</td>
</tr>
<tr>
<td>SNOE 238</td>
<td>185</td>
</tr>
<tr>
<td>SNOE 240</td>
<td>175</td>
</tr>
<tr>
<td>SNOE 244</td>
<td>160</td>
</tr>
<tr>
<td>SNOE 248</td>
<td>145</td>
</tr>
<tr>
<td>SNOE 316</td>
<td>480</td>
</tr>
</tbody>
</table>

Table 5
6. Trouble, Repair

6.1 General remarks

The repair of troubles on the fan must only be carried out by specialist personnel that is appointed by the person who is responsible for the system.

When trouble shooting is carried out, the entire surroundings of the fan (equipment, motor, variable speed control, foundation, kind of installation, switchboard plant, etc.) must be taken into account.

Observe the particular instructions in the operating manuals of the motor and variable speed control producers.

If damages occur during the warranty period, contact the manufacturer.

6.2 Safety instructions

When trouble shooting or repair is carried out, observe the following:

- valid regulations, e.g. German DIN VDE 0105
- regulation for the prevention of accidents, e.g. German regulations BGV A1 and BGV A3

- Ensure that the fan is switched dead.
- Secure against restart and mark with relevant information sign.
- Check for and ensure dead condition.
- Connect to earth and short-circuit the fan.
- Cover or secure by barrier adjacent live parts.
- Ensure that the impeller is at standstill and cannot be set unintentionally into motion.

Attention:
Stack draught or other air draught in the connected duct work may set the impeller in motion.
6.3 Troubles

<table>
<thead>
<tr>
<th>Troubles</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsteady run of fan</td>
<td>material sticking to impeller blades.</td>
<td>clean impeller carefully</td>
</tr>
<tr>
<td></td>
<td>impeller worn out</td>
<td>exchange impeller</td>
</tr>
<tr>
<td></td>
<td>impeller deformed by thermal effect</td>
<td>exchange impeller</td>
</tr>
<tr>
<td></td>
<td>distortion of fan by uneven foundation</td>
<td>loosen foundation fastenings and level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>foundation, subsequently re-fasten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the fan</td>
</tr>
<tr>
<td></td>
<td>improper adjustment of the anti-vibration mounts</td>
<td>correct adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(spring-type)</td>
</tr>
<tr>
<td></td>
<td>stress due to incorrect installation of</td>
<td>use flexible connections for the ducting</td>
</tr>
<tr>
<td></td>
<td>the ductwork</td>
<td></td>
</tr>
<tr>
<td>handled gas leaks from the shaft sealing</td>
<td>seal defective or worn out</td>
<td>exchange sealing</td>
</tr>
<tr>
<td>rubbing noises from the fan</td>
<td>impeller rubs against inlet.</td>
<td>loosen top part of housing and readjust, if</td>
</tr>
<tr>
<td></td>
<td></td>
<td>required, check ducting and readjust it</td>
</tr>
<tr>
<td></td>
<td>motor noise</td>
<td>check motor for bearing damages, if</td>
</tr>
<tr>
<td></td>
<td></td>
<td>required, exchange bearings</td>
</tr>
<tr>
<td>the current consumption stated on the</td>
<td>handled gas volume too high</td>
<td>reduce the flow volume by using a damper</td>
</tr>
<tr>
<td>motor name plate is exceeded</td>
<td></td>
<td>until the permitted current consumption</td>
</tr>
<tr>
<td>permanently</td>
<td></td>
<td>is reached</td>
</tr>
<tr>
<td></td>
<td>different speed due to 60 Hz network</td>
<td>check frequency.</td>
</tr>
<tr>
<td>fan does not start up</td>
<td>incorrect electric connection of the motor</td>
<td>check electric connection</td>
</tr>
<tr>
<td></td>
<td>trouble with star-delta starting, motor stops</td>
<td>reduce change-over time from star to delta</td>
</tr>
<tr>
<td></td>
<td>acceleration during star connection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>start-up against too low system resistance</td>
<td>close dampers or install additional plate</td>
</tr>
<tr>
<td></td>
<td>design of motor protective system insufficient</td>
<td>shutters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cable cross section and motor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>protective system must be designed for the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>starting current during the complete start-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>up</td>
</tr>
<tr>
<td></td>
<td>start-up time takes too long</td>
<td>close dampers, check starting torque of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>motor M_{N}/M_N</td>
</tr>
<tr>
<td></td>
<td>drive motor defective</td>
<td>check motor and exchange, if</td>
</tr>
<tr>
<td></td>
<td></td>
<td>required</td>
</tr>
<tr>
<td></td>
<td>motor too warm due to high connecting frequency</td>
<td>choose permanent operation of the fan and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>control the flow with dampers or variable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>speed control</td>
</tr>
<tr>
<td></td>
<td>starting current too high</td>
<td>incorrect voltage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>provide for star-delta start-up,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>insufficient local power supply</td>
</tr>
</tbody>
</table>

Table 6
6.3.1 Bearing troubles

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsteady run</td>
<td>damages on bearing races and rollers / balls,</td>
<td>exchange bearings.</td>
</tr>
<tr>
<td></td>
<td>bearing clearance too large</td>
<td></td>
</tr>
<tr>
<td></td>
<td>wear caused by dirt or insufficient lubrication</td>
<td>protect bearings against contamination, use clean grease only</td>
</tr>
<tr>
<td>extraordinary running noise:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wailing or whistling noise</td>
<td>bearing clearance too small</td>
<td>use bearings with higher clearance</td>
</tr>
<tr>
<td>rumbling or irregular noise</td>
<td>bearing clearance too high, damages on bearing rolling surfaces,</td>
<td>exchange bearings</td>
</tr>
<tr>
<td></td>
<td>dirt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inappropriate lubricant</td>
<td>use appropriate grease only.</td>
</tr>
<tr>
<td>gradual change of running noise</td>
<td>bearing clearance is changed by thermal influences, damages on the bearing races (e.g. caused by contamination or material fatigue)</td>
<td>protect bearings against temperature</td>
</tr>
</tbody>
</table>

Table 7

6.3.2 Coupling troubles

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsteady run</td>
<td>the halves of the coupling do not stay in optimum alignment.</td>
<td>check alignment according to the instructions</td>
</tr>
<tr>
<td></td>
<td>flexible components are worn out</td>
<td>exchange flexible components</td>
</tr>
<tr>
<td></td>
<td>flexible components are too soft</td>
<td>use flexible components with higher shore-hardness</td>
</tr>
<tr>
<td>strong impacts during start-up</td>
<td>flexible components are worn out</td>
<td>exchange flexible components</td>
</tr>
<tr>
<td></td>
<td>starting torque of the motor(s) is too high M<sub>s</sub>/M<sub>n</sub></td>
<td>star-delta-wiring</td>
</tr>
<tr>
<td>Rupture of coupling during test run</td>
<td>high negative torque impacts when the motor is re-started</td>
<td>on principle, the fan may only be restarted after the total standstill of the impeller, this prevents torque impacts which can occur when the rotor is still running (even slightly) at the time of restart (phases do not match). check function mode of the star-delta switch (change-over time response)</td>
</tr>
</tbody>
</table>

Table 8
7. Maintenance

7.1 General remarks

- All maintenance and service works on the fan may only be carried out by specialist personnel that is appointed by the person who is responsible for the plant, see chapter 2.8 Qualified person and chapter 2.9 Personal protective equipment.

- Please observe the maintenance instructions for the electric drive as indicated in the operating manuals of the motor producers.

- Observe specified maintenance intervals and use specified lubricants and lubricant quantities only.

- Collect used oil, used grease and/or cleaning rags contaminated with oil / grease in containers correspondingly marked and take care for proper disposal.

- Check all securing components of the screwed connections and exchange them for the new securing components, if required.
7.2 Safety instructions

- Carry out maintenance works (lubrication works excepted) at standstill of the fan only, maintenance works see chapter 7.10 Maintenance schedule.

- Ensure that the fan is secured against restart and marked by a corresponding information sign.

- Observe the safety instructions and the regulations for prevention of accidents of the relevant manufacturers when oil / lubricants, detergents or spare parts are used.

- Maintenance works on the electric connections of the fan or on electric auxiliary / control connections must exclusively be carried out by professional electricians who have to observe the valid regulations (e.g. German DIN VDE 0105)

- Ensure that the fan is switched dead.

- Secure against restart and mark with corresponding information sign.

- Check for and ensure dead condition.

- Connect to earth and short-circuit.

- Cover or secure by barrier live parts.

- Ensure that the impeller is at standstill and cannot be set unintentionally into motion.

Attention:
Stack draught or other air draught in the connected duct work may set the impeller in motion.
7.3 Bearings

This chapter describes the standard bearing design. If an individual bearing solution applies, the special bearings are described in a separate "supplement to the operating manual" or in an "order-related operating manual.

Depending on the design type, the fan shaft runs
- In two oil-lubricated anti-friction bearings in single bearing housings or
- In two or three oil-lubricated anti-friction bearings in a multiple bearing block.

Depending on the design type, the sealing of the bearing is done by:
- re-greaseable labyrinth seal
- felt ring
- if necessary, additional shaft seal ring (V ring)
- if necessary, additional radial shaft seal (Simmerring)

The bearings are designed for ambient temperatures from -5°C to +40°C. If the bearing unit is sound deadened with a noise protection cover or otherwise insulated, care must be taken that there is proper and permanent ventilation to prevent heat accumulation within the protection device.
7.3.1 Lubrication

Read carefully before fan commissioning.

Check the oil level prior to the first commissioning. The oil fill level must be between the markings “min” and “max”.

If the fan is not put into operation immediately after delivery but at a later point of time, the corresponding instructions for storage and corrosion protection of radial fans must be observed.

Oil has to be refilled to the maximum mark after a longer standstill period and within the prescribed maintenance intervals.

7.3.1.1 General remarks

Oil-lubricated anti-friction bearings are provided at the factory with operational oil or special anti-corrosion oil (e.g. Mobilarma 524). If the bearings have been filled with special anti-corrosion oil, the bearings are marked with a corresponding sign (see chapter 7.3.1.2 Factory-provided filling with special anti-corrosion oil).
7.3.1.2 Factory-provided filling with special anti-corrosion oil

If the bearings are filled with special anti-corrosion oil, they are correspondingly marked with this bilingual sign:

ACHTUNG:
Die Stehlager sind mit einem Spezial-Konservierungsöl gefüllt.

Maßnahmen vor Erstinbetriebnahme:
Schritt 1: Spezialkonservierungsöl ablassen

Bei Verwendung von mineralischem Öl als Betriebsöl:
Schritt 2: Lager mit Betriebsöl füllen (Ölsorte und Ölmengen gemäß Angaben des Lagerschildes beachten)

Bei Verwendung von synthetischem Öl als Betriebsöl:
Schritt 2: Lager bis zum maximalen Betriebsfüllstand mit Betriebsöl füllen, anschließend ca. 30 Minuten lang spülen, danach dieses Öl betriebswarm ablassen und schließlich erneut mit frischem Betriebsöl die Lager füllen (Ölsorte und Ölmenge gemäß Angaben des Lagerschildes beachten)

ATTENTION:
The single bearings are filled with special anti-corrosion oil.

Measures before initial start-up and commissioning:
Step 1: Drain the special anti-corrosion oil.

In case the operating oil is mineral oil:
Step 2: Fill the bearing with the operating oil. Oil type and quantity according to the oil bearing plate.

In case the operating oil is synthetic oil:
Step 2: Fill the bearings up to maximum operating oil level with the operating oil and rinse the bearings with this oil filling for about 30 minutes. Afterwards, drain the oil still warm and re-fill the bearings with fresh operating oil. Oil type and quantity according to the oil bearing plate.

Figure 28: Sign „Factory-provided bearing filling with special anti-corrosion oil“

Please proceed for de-preservation and re-filling of the bearings as indicated in the steps on this sign.

Lubricants must be disposed of in a safe manner consistent with all applicable regulations and in an environmentally compatible way.
7.3.2 Anti-friction bearings

Maintenance of the anti-friction bearings:

- monitoring of the bearing temperature during operation,
- check of the bearings for running noises and vibrations
- lubrication of the anti-friction bearings,
- exchange of bearings.

If increased bearing temperatures (→ chapter 9.1.3 Limiting values bearing temperatures) or running noises and / or vibrations (→ chapter 9.1.2 Limiting values vibrations) occur during operation, disconnect the fan immediately to avoid consequential losses.

Remove bearings and check them for damages.

If the bearing shows dark discoloured, dull, coarse or polished looking parts of the bearing races and / or of the rollers / balls, install a new bearing.

Bearings removal / installation by Reitz-service staff only.

If the removal / installation of the bearings are carried out by the operating company, only the bearings recommended or delivered by the bearing manufacturer must be installed. Furthermore the installation instructions of the manufacturer must be observed.

Only install bearings of the same type and clearance range, for type of bearing see nameplate.

When ordering spare parts, specify fan type and serial number (→ nameplate).

Check and document the bearing temperature and vibration velocity at the bearing regularly, but at least once a week in order to maintain the operational reliability and availability of the fan. If necessary, take measures such as maintenance at bearings, coupling, motor or impeller.
7.3.2.1 Oil lubrication methods

Depending on the type of the bearings (in single bearing housings or a multiple bearing block) there are different methods of oil lubrication:

Lubrication with oil pick-up ring in case of single bearing housings

The oil pick-up ring extends into the oil sump in the housing base. When the shaft turns, the ring turns with it, bringing oil to lubricate the appropriate bearing parts. The oil then flows back to the sump. It is imperative to adhere to the minimum speeds given in chapter 5.7 Minimum speeds for oil-lubricated bearings in single bearing housings.

Figure 29 Single bearing housing

![Figure 29 Single bearing housing](image)

Oil sump lubrication for double/multiple bearing blocks

Oil sump lubrication, also known as oil bath or oil splash lubrication, is one type of oil lubrication. The lowest moving body of the bearing dives in the oil sump up to approximately half of its diameter. With each rotation the moving bodies are bathed with oil. The maximum oil level should reach to approximately half of the anti-friction bearing diameter. A higher oil filling leads to splash (churning) losses which in turn result in increased bearing temperatures. The oil sump lubrication ensures perfectly safe lubrication under all operating conditions. There is no need to observe minimum speeds.

Figure 30 Double bearing block / multiple bearing block (example)

![Figure 30 Double bearing block / multiple bearing block (example)](image)
During the operation, the oil level may drop to the minimum “min.” marking (see Figure 23). The oil-level glass shows minimum “min.” and maximum “max.” marks. The level must not drop below mark “min.” If the oil level drops below this mark, refill oil to approximately 5 mm below the mark for the maximum level. Do not refill more oil, since otherwise this oil quantity together with the quantity in the oil circuit could amount to a total oil quantity that is too high. Refilling is permitted while the fan runs.

The oil quantities indicated in adjoining tables are only rough values. The decisive factor is the oil level during operation.

7.3.2.2 Oil quantities and oil types

Figure 31

<table>
<thead>
<tr>
<th>SNOE</th>
<th>oil quantity (ca.) in litres per bearing housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>1,4</td>
</tr>
<tr>
<td>217</td>
<td>1,4</td>
</tr>
<tr>
<td>218</td>
<td>1,5</td>
</tr>
<tr>
<td>220</td>
<td>1,7</td>
</tr>
<tr>
<td>222</td>
<td>2,1</td>
</tr>
<tr>
<td>224</td>
<td>2,3</td>
</tr>
<tr>
<td>226</td>
<td>2,3</td>
</tr>
<tr>
<td>228</td>
<td>3,7</td>
</tr>
<tr>
<td>230</td>
<td>4,2</td>
</tr>
<tr>
<td>232</td>
<td>4,7</td>
</tr>
<tr>
<td>234 II</td>
<td>5,2</td>
</tr>
<tr>
<td>236 II</td>
<td>5,2</td>
</tr>
<tr>
<td>238 II</td>
<td>6,5</td>
</tr>
<tr>
<td>240 II</td>
<td>6,3</td>
</tr>
<tr>
<td>244 II</td>
<td>8,2</td>
</tr>
<tr>
<td>248 II</td>
<td>10,0</td>
</tr>
<tr>
<td>316</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Table 9 oil quantities single bearings

<table>
<thead>
<tr>
<th>ZLOE/DLOE</th>
<th>oil quantities (ca.) in litres per multiple bearing block</th>
</tr>
</thead>
<tbody>
<tr>
<td>218..</td>
<td>0,8</td>
</tr>
<tr>
<td>220..</td>
<td>1,3</td>
</tr>
<tr>
<td>222..</td>
<td>1,7</td>
</tr>
<tr>
<td>315..</td>
<td>0,8</td>
</tr>
<tr>
<td>317..</td>
<td>1,3</td>
</tr>
<tr>
<td>319..</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Table 10: oil quant. multipl.bearing blocks

Figure 23 oil level indicator

Mineral or synthetic oils may be used as operating oils:

a) mineral oils

<table>
<thead>
<tr>
<th>producer’s designation</th>
<th>pertaining sealing grease</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOBIL NUTO H68</td>
<td>SHELL ALVANIA RL3</td>
</tr>
<tr>
<td>SHELL TELLUS S68</td>
<td>SHELL ALVANIA RL3</td>
</tr>
</tbody>
</table>

For extreme climatic ambient conditions, that is to say for ambient cryogenic temperatures up to -40°C, the following lubricants are used:

| MOBIL Univis HVI26 | MOBIL Unirex S2 |

b) synthetic oils

<table>
<thead>
<tr>
<th>producer’s designation</th>
<th>pertaining sealing grease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klüber Synth GEM 4-46N</td>
<td>Klüber Staburags NBU 30K</td>
</tr>
<tr>
<td>Klüber Synth GEM 4-68N</td>
<td>Klüber Staburags NBU 30K</td>
</tr>
</tbody>
</table>

See the plate "Maintenance of the bearings" at the fan for the chosen lubricants.

Do not use other lubricants.

See chapter 7.3.2.5 Oil change – lubrication intervals for relubrication intervals.

Used grease must be disposed of in a safe manner consistent with all applicable regulations and in an environmentally compatible way.
7.3.2.3 Sealing of the bearings

Sealing grease is to be re-greased regularly in dependence of the ambient conditions, but at least monthly by using the grease nipples, pos. 4 (Figure 32). If seal grease leaks out, the bearing housing is no longer tightly sealed which - in dependence of the ambient conditions - might lead to premature contamination of the lubricant and might in turn shorten the bearing service life. When re-greasing, sealing grease should be pressed in until new fresh grease occurs at the seal gap.

![Figure 32 Sealing of oil-lubricated bearings (example)](image)

7.3.2.4 Bearings monitoring devices

For the monitoring of the bearing conditions there is an M8 threaded bore at the bottom of the bearing housing next to the stressed zone of the built-in bearing. A shock pulse measuring device can be connected here by using a measuring probe. Beginning bearing damages can be detected at an early stage and the most favourable point of time for possible bearing exchange can be defined.

The bearing temperature and the vibration velocity at the bearings are to be metered and recorded in regular intervals, but at least once a week in order to keep up the operational reliability of the fan and the system's availability. If necessary, adequate measures are to be derived from the findings, for example maintenance works at the bearings, coupling, motor or impeller.
7.3.2.5 Oil change – lubrication intervals

The maximum oil change interval can be taken from the bearing name plate “maintenance of the bearings”.

Oil changes must only to be carried out when the fan is at standstill.

Check the oil level regularly, at least once a month.

During oil change, pay attention to cleanness and proper handling of the lubricants in view of environmental protection requirements.

Transport used oil and cleaning rags in assigned containers, take care for their proper disposal.

Mineral oil
If mineral lubricating oil is used, change the oil every 5,000 operating hours.

Synthetic oil
The oil must be changed every 8,000 working hours but at least once per year, provided that the bearing temperature does not exceed 80°C and the ambient temperature does not exceed 40°C and also provided that the lubricating oil is not blended or mixed with other lubricating oils.

If the named conditions, however, are not fulfilled, change the synthetic oil every 5,000 operating hours.
7.3.2.6 External oil supply

In case the bearing housing with oil sump lubrication is additionally provided with provision for an external oil supply (e.g. purge oil mist lubrication or recirculating oil lubrication system) and/or the external oil viscosity is dissimilar to the viscosity of the oil supplied by the manufacturer, the operating company has to determine the oil change interval for maintenance. The oil change procedure has to be determined based on periodic measurement of viscosity, temperature and contamination.

If an external oil supply system is provided for, it has to be installed permanently and to be functionally operated on principle in order to sustain the fan's operationability. In case of an emergency, the anti-friction bearing might be kept running with the splash lubrication only until the temperature or vibration limit values are reached.

The findings of the viscosity, temperature and contamination examination and the resulting steps are to be recorded in written form and are to be made available to the fan's manufacturer upon request during the warranty period. The warranty will be invalidated if procedure and maintenance records are not complete.

Figure 33 Sealing of oil-lubricated bearings in case of external oil supply (example)
7.4 Shaft seal

Depending on the individual requirements the fan can be equipped with different seal systems.
If heightened temperatures or running noises occur at the shaft sealing during operation, immediately switch down the fan to prevent subsequent damage.

7.4.1 Standard seal

Shaft seal with soft fibre ring (eg UNITEC 300) for a temperature range up to +180°C

![Figure 34](image)

Figure 34 → presentation of shaft seal

7.4.2 Shaft seal with graphite ring

Shaft seal with cramped graphite-ring in sheet metal housing

The seal with cramped graphite ring must be re-lubricated monthly. Apply a small quantity of lubrication oil into the clearance between the seal and shaft by oil can.

![Figure 35](image)

Figure 35 → presentation of shaft seal
7.4.3 Seal with special rings

The shaft seal can be provided with one or two graphite rings. This type of seal is also called labyrinth seal.

Lubrication of this sealing type is not possible.

Figure 36 → Presentation of shaft seal with one graphite ring

7.4.4 Shaft seal with grease barrier

For improving the leak tightness a grease barrier can be used. The grease barrier reduces the gas penetration through the shaft seal.

Usage of the lubricator enables a maintenance-fee operation of approximately 3 months.

Figure 37 → Presentation of shaft seal

7.4.5 Shaft seal with barrier gas

If barrier gas is used, it must be ensured that the pressure of the barrier gas is always higher than the pressure at the shaft seal that is created by the fan operation. Vacuum operation means higher barrier gas pressure than the maximum static pressure increase, pressure operation means higher barrier gas pressure than the total pressure increase.

It is obligatory to observe the instructions of the seal manufacturer.

Please note: Request technical data regarding minimum and maximum barrier gas pressure from the manufacturer.

Equal or lower barrier gas pressure would enable the penetration of solid matters into the sealing system and therewith an increased wear or, in the worst case, a total breakdown of the seal could be caused.

Monitor the barrier gas consumption or the leakage continuously. A significant increase of the values points out wear of the sealing rings and / or repair.

While carrying out inspection works, the shaft seal must be checked for damages (e.g. corrosion) and must be cleaned.

If sealing components are damaged (scratches, cracks, dents) the complete seal set must be renewed.

Figure 38 → presentation of shaft seal
7.4.6 Shaft seal of type REW6 (Ø 40 to Ø 120)

The shaft seal of type REW6 can be used up to a seal diameter of 120mm. It is suitable for dry running and do not require any lubrication.

The sealing rings are radially cut into several sections and held together by means of a surrounding hose spring.

If it is necessary to replace the sealing rings, please observe the separate mounting instruction of the manufacturer.

Further mounting remarks:

Seal the housing halves with non-adhesive sealing compound (e.g. Epple Stukarit 203 or sealing grease E600N). The radial shaft centre offset of the shaft may not exceed ± 1.5 mm

7.4.7 Shaft seal of type REW6 (Ø 140 to Ø 240)

The shaft seal of type REW6 can be used up to a seal diameter of 120mm. It is suitable for dry running and do not require any lubrication.

The sealing rings are radially cut into several sections and held together by means of a surrounding hose spring.

If it is necessary to replace the sealing rings, please observe the separate mounting instruction of the manufacturer.
7.5 Shaft earthing

If the fan is provided with a shaft earthing, check the correct functioning regularly. There must be no gap between sliding contact (e.g. carbon brush) and shaft. Choose the revision intervals based on the operation conditions. We recommend function checks every quarter of the year. Spare parts like carbon brush, holders, etc. can be ordered from REITZ (indicate serial fan number).

If a protection device covers the shaft earthing, please mark the guard with a corresponding sign.

Proper setting of shaft earthing:

Set the holder of the carbon brush so that there is a minimum gap of 2mm between holder and shaft when the carbon brush is removed from the holder (see Figure 42). This ensures that the holder cannot get in contact with the shaft and hence excludes possible spark formation.

Adjust the holder so that the overall sliding contact of the carbon brush is centrically to the shaft. The centre line of the carbon brush must run through the shaft centre.

Pull back the holder and insert the carbon brush. The spring tension force is at maximum with a new carbon brush and will decrease with the increasing wear of the carbon brush.

Replacement of carbon brush (Adhere to minimum size):

The carbon brush has to be replaced when its minimum size is less than 3mm; that is to say that a minimum thickness of 3mm must project from the holder at all points of the brush.
7.6 Coupling

If the load moments exceed the permissible overload values, the coupling can break.

Then the coupling will be an ignition source.

Couplings that are designed for the operational conditions of the directive 94/9/EG are marked accordingly.

The coupling is maintenance-free. When carrying out a general overhaul of the drive system, exchange the flexible intermediate rings.

7.6.1 Alignment

The alignment of the coupling must be checked after 2000 operating hours.

Disconnect the fan and check alignment when working temperature is prevailing.

- Ensure that the fan is switched dead.
- Secure against restart and mark with corresponding information sign.
- Check for and ensure dead condition.
- Connect to earth and short-circuit.
- Cover or secure by barrier adjacent live parts.

- Remove the protection cover of the coupling (bearing / motor).

Observe the instructions in chapter 3.6.7 Alignment of the shafts for the following steps:

- Check the alignment of the motor to the bearing with appropriate measuring tools.
- Observe the distance (S₁) between the coupling halves as instructed by the manufacturer.
- If the measured values are within the permissible variations, check the fastening screws of the motor for tight conditions. If the tolerance values are exceeded, please re-adjust the fan.

Figure 43→ Representation of distance s₁
7.7 Marking, information sign

The marking / information signs must be:

- cleaned with a rag,
- checked for tight fastening and legibility.

Legend:
1 name plate
2 sense of rotation arrow
3 warning notice inspection opening (optional)
4 sign “Maintenance of the bearings”
5 sign “danger symbols with explanations”
6 sign “Read operation manual”
7 sign “Attention – do not weld”
8 motor nameplate
9 earthing clamps (optional)

Figure 44 → Example for markings
The fan can be designed for use in potentially explosive atmosphere. An individual nameplate then indicates the equipment group and category as per directive 94/9/EC (ATEX).

<table>
<thead>
<tr>
<th>Ventilator:</th>
<th>MXX 015-00200-00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrik-Nr.:</td>
<td>367627</td>
</tr>
</tbody>
</table>

Figure 45

Figure 45 → example of an ATEX individual nameplate
7.8 Waste disposal

Collect used oil, used grease or cleaning rags / wool contaminated with oil / grease in containers correspondingly marked and dispose of them in a safe manner consistent with all applicable regulations and in an environmentally compatible way.

7.9 Revision

The required examinations and maintenance of fans that are designed in accordance with directive 94/9/EC may only be carried out by qualified personnel.

In general, half-yearly up to yearly revision intervals should be sufficient under the conditions that:

- all checks in the course of the commissioning / start-up and the maintenance works were carried out properly and in due time, and
- each serious constitutional change that were recognized by the continuous operation monitoring has been systematically investigated and repaired.
7.10 Maintenance schedule

<table>
<thead>
<tr>
<th>Structural component</th>
<th>Daily</th>
<th>Weekly</th>
<th>Quarterly</th>
<th>Yearly</th>
</tr>
</thead>
<tbody>
<tr>
<td>impeller</td>
<td>• An inspection of the impeller must be carried out immediately, if the permissible limiting values (see chapter 9.1.2 Limiting values vibrations) are exceeded, • changed impeller noises occur. Examine the impeller every 5,000 operating hours and check it for alteration (cracks, geometric alterations, balancing condition, wear and sticking material), but at least once a year. Check the impeller e.g. by non-destructive crack testing, Fans that are subject to high dynamical stresses are to be checked in accordance with the additional agreement (maintenance schedule) within the prescribed intervals.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bearings</td>
<td>• An inspection of the bearings must be carried out immediately, if the permissible limiting values (see chapter 9.1.2 Limiting values vibrations and 9.1.3 Limiting values bearing temperatures) are exceeded, • changed running noises occur • unusual alterations of the lubricant occur • check the fixation of the bearing foot and re-tighten the screws if necessary</td>
<td></td>
<td>Re-lubrication intervals acc. to plate “Maintenance of the bearings” (see chapter 7.3.2.5 Oil change – lubrication intervals)</td>
<td></td>
</tr>
<tr>
<td>oil level measuring</td>
<td>The oil level has to be checked regularly but at least once a month. The intervals have to be scheduled by the operating company dependent on the operational type. Maintain the oil supply system – if any – in accordance with its separate operating manual.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shaft seal</td>
<td>The shaft sealing rings have to be checked and exchanged if the barrier gas consumption or leakage increases. Exchange the shaft seal ring when the rings are worn or damaged. If the seal ring consists of more than one part, replace the full seal ring set.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shaft earthing</td>
<td>Check the correct functioning of the shaft earthing regularly and in dependence of the operating conditions and replace it, if required. Check the function monthly.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>condensate drain</td>
<td>Drain the accumulated condense water in regular intervals or when required in a suitable drain receptacle and dispose of it in an environmentally compatible way.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coupling</td>
<td>If noise levels are changed abruptly and / or vibrations occur abruptly, the coupling must be checked and if required, it must be re-aligned or exchanged.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>motor</td>
<td>pay attention to running noises and quiet running, remove sticking material (e.g. dust), if required</td>
<td>re-tighten screws, check bearings</td>
<td>check motor, if required, exchange bearings, observe maintenance instructions of motor manufacturer, check the motor foot fixation</td>
<td></td>
</tr>
<tr>
<td>earthing motor</td>
<td></td>
<td>clean inside, tighten screws</td>
<td>clean inside, tighten screws</td>
<td></td>
</tr>
<tr>
<td>terminal box</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>connections for</td>
<td>collect measuring values and analyse them</td>
<td>check for functionality</td>
<td>check for functionality</td>
<td></td>
</tr>
<tr>
<td>monitoring devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and auxiliary equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>flexible connections</td>
<td>check at regular intervals and – if required – after change of the processes.</td>
<td>check, if required, retighten screws and if worn-out, exchange flexible connections</td>
<td>check, if required, retighten screws and, if worn out, exchange flexible connections</td>
<td></td>
</tr>
<tr>
<td>and chutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural component</td>
<td>Daily</td>
<td>Weekly</td>
<td>Quarterly</td>
<td>Yearly</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>total fan</td>
<td></td>
<td>pay attention to operational noises and quiet running, remove sticking material (dust) on the fan, in particular in the area of the shaft sealing and on the bearing housing</td>
<td>pay attention to operational noises and quiet running, check all screwed connections for tightness and re-tighten if necessary</td>
<td>check impeller, fan bearings and motor bearings, shaft seal, coupling and flexible connections for wear and, if required, repair or exchange them</td>
</tr>
</tbody>
</table>

Table 11

The checks and controls in accordance with the maintenance schedule mainly contribute to the unrestricted continuous functioning of the fan and hence to the complete system and are regarded as being part of the operational company's requisite obligations.
8. Repair work

8.1 General remarks

Authorized personnel only is entitled to repair fans that are designed in accordance to the directive 94/9/EC (ATEX).

- Prior to removal / installation of spare parts, as:
 - impeller,
 - anti-friction bearings,
 - sealing rings,
 - coupling inserts,
 - motor,

prepare everything to ensure smooth and faultless working processes.

- Use appropriate removal / installation devices, tools and heating devices for the anti-friction bearings.

- The working place for the removal of the parts must be kept clean.

- Install only spare parts recommended and/or delivered by the manufacturer. The special installation instructions must be observed. These instructions are not part of this operating manual and are to be requested from REITZ as separate documents.
8.2 Fans in accordance with directive 94/9/EC ATEX

Maintenance of fans that were designed in accordance with directive 94/9/EC may only be carried out by qualified personnel (see chapter 2.8 Qualified person), see also chapter 2.4 Safety regulations.

Example for the stages of the maintenance:

<table>
<thead>
<tr>
<th>stage</th>
<th>activity</th>
<th>instructions</th>
<th>responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>maintenance</td>
<td>e.g. re-grease bearings</td>
<td>observe lubrication instructions</td>
<td>operating company</td>
</tr>
<tr>
<td>inspection</td>
<td>e.g. check impeller for wear and tear</td>
<td>observe the instructions of the operating manual</td>
<td>operating company</td>
</tr>
<tr>
<td>repair</td>
<td>e.g. replace impeller</td>
<td>observe the instructions of the operating manual</td>
<td>operating company</td>
</tr>
</tbody>
</table>

Table 12 Example for the stages of the maintenance

8.3 Safety instructions

Repair work that has been carried out during the warranty without our prior written agreement of the manufacturer, leads to the extinction of all warranty rights.

Recommendation:

If repair works are required, request the service specialists of the manufacturer:

- Carry out maintenance works at standstill of the fan only.
- Ensure that the fan is secured against restart and marked by a corresponding information sign.
- Observe the safety instructions and the regulations for prevention of accidents.
8.4 Spare parts

When ordering spare parts, specify

- the exact name of the structural components
- the type of machine and
- the serial number.

The spare parts list (see enclosure) is a document separately attached to this operating manual. The clearly arranged list comprises all main spare parts for the fan with exact description of the parts.

Type of machine and serial number are shown on the name plate.

If required, send the manufacturer a sample of the part to be exchanged.
9. Annex

9.1 Additional technical information

9.1.1 Tightening moments for fastening screws

Unless otherwise stated, use the following tightening moments for connections with fastening screws and fastening nuts: Data in Newton metre (Nm).

When installing the fan, reduce the tightening moments by 10% so that the screw is not tightened to its yield point.

Values for set screws with metric coarse pitch thread bases upon German Standard VDI2230 with a coefficient of frictions are

$$\mu_{ges} = \mu_K = \mu_G = 0.12.$$

The tightening moments refer to slightly oiled screws and nuts.

<table>
<thead>
<tr>
<th></th>
<th>screws property class 8.8</th>
<th>screws property class 10.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>M8</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>M10</td>
<td>49</td>
<td>69</td>
</tr>
<tr>
<td>M12</td>
<td>86</td>
<td>120</td>
</tr>
<tr>
<td>M16</td>
<td>210</td>
<td>295</td>
</tr>
<tr>
<td>M20</td>
<td>410</td>
<td>580</td>
</tr>
<tr>
<td>M24</td>
<td>710</td>
<td>1000</td>
</tr>
<tr>
<td>M27</td>
<td>1050</td>
<td>1500</td>
</tr>
<tr>
<td>M30</td>
<td>1450</td>
<td>2000</td>
</tr>
<tr>
<td>M36</td>
<td>2400</td>
<td>3555</td>
</tr>
</tbody>
</table>
9.1.2 Limiting values vibrations

Table of limiting values for fans:

<table>
<thead>
<tr>
<th>Machinery Class</th>
<th>Motor Power in kW</th>
<th>Substructure or System of Installation</th>
<th>Evaluation Zones</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A New State</td>
<td>B Continuous operation</td>
<td>C Permissible for a short-time</td>
<td>D Unacceptable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eff. velocity v_{eff} in mm/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 *)</td>
<td>> 15 ≤ 300</td>
<td>rigid</td>
<td>≤ 1,4</td>
<td>1,4 - 2,8</td>
<td>2,8 - 4,5</td>
<td>> 4,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>flexible</td>
<td>≤ 2,3</td>
<td>2,3 - 4,5</td>
<td>4,5 - 7,1</td>
<td>> 7,1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>> 300</td>
<td>rigid</td>
<td>≤ 2,3</td>
<td>2,3 - 4,5</td>
<td>4,5 - 7,1</td>
<td>> 7,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>flexible</td>
<td>≤ 3,5</td>
<td>3,7 - 7,1</td>
<td>7,1 - 11</td>
<td>> 11</td>
<td></td>
</tr>
</tbody>
</table>

*) Motors smaller than 15kW are not treated separately in the DIN ISO 10816-3 and are therefore assigned to group 2.

The values assigned to the rating zones are not intended to serve as acceptance values. The acceptance values have to be specified between the machine manufacturer and the customer. The values should serve as guidelines to avoid major errors or unrealistic requirements.

The above shown warning and disconnecting values regarding the working temperature are maximum values. They are related to an ambient temperature of 40°C and an altitude of installation of up to 1000 m asl. Under special circumstances these values can be exceeded, if the preceding agreement of the manufacturer is obtained.

Evaluation criteria regarding vibrations according to German standard DIN ISO 10816/3.

If the vibration values level out between warning and disconnecting and if the fan is carefully observed, the operating of the fan can be continued until a proper point of time is defined, so the process can be shut down in a controlled way.

Possible damages of the fan can not be excluded → if required, inform REITZ.
9.1.3 Limiting values bearing temperatures

Warning at 80 °C

Disconnecting at 100 °C

Temperature is a long-time indicator for the machine load. Excessive bearing load results in an increase in temperature of the bearing. Provided that the anti-friction bearing is used properly in accordance with the advised design instructions, a nearly constant working temperature of the bearing will turn up at constant working conditions after the initial operation phase. If the temperature changes without alteration of the speed or the load or without addition or reduction of warmth, this is an indication for a disturbed lubrication condition. Load changes due to malfunction of the non-located bearing can be recognised by the temperature course of the bearing. Bearing damages due to interruptions of the lubrication film or malfunction of the bearing can be recognized early by using a temperature monitoring device for the bearing. Running period damages due to fatigue and ageing can not be detected by a temperature monitoring device for the bearing.

The bearing temperature is measured by an electric temperature probe directly on the outer ring of the bearing.

Permissible bearing temperatures

![Graph showing permissible bearing temperatures: pre-warning at 80 °C, disconnection at 100 °C, max. permissible temperature at 120 °C.](image)
9.2 Requests regarding field service staff

For any queries or to require service specialists or spare parts, we ask you to specify the following data:

- Serial number of the fan, (6-digit number, see fan data sheet or name plate).
- Exact address of the operating company.
- Name of the person in charge who is to be contacted by our service specialist.
- Describe the trouble and your observations as exact as possible. The more exact the information, the easier for us to support you efficiently and quickly. Please inform us in detail by fax or e-mail.

See chapter 14 of this operating manual for detailed addresses of all companies of the REITZ Group.
10. Fan shutdown

10.1 General remarks

The definition – fan shutdown– means standstill of the fan for a longer period of time. It is necessary to weather-proof the fan.

In case the fans are intermediately stored for more than 3 months observe the instructions of the separate “Instructions for Storage and Corrosion Protection”. If necessary, request them from REITZ.

10.2 Safety instructions

Works required for putting the fan out of action must exclusively be carried out by specialist personnel, that due to professional training, experiences and instructions has sufficient knowledge about:

- Safety regulations,
- Regulations for prevention of accidents,
- Directives and accepted engineering standards (e.g. German VDE-directives, DIN EN Standards).

- The specialist personnel must:
- be able to assess the works allocated to them, to recognize possible dangers and to avoid them.
- be authorized by the person who is responsible for the safety of the plant to carry out the required works and tasks.

Works on electric systems, like disconnecting the fan from the electric supply, must exclusively be carried out by professional electricians.

- Disconnect fan from the power supply.
- If a future re-commissioning is intended, protect all structural components against corrosion.
- Cover machine parts.

Dispose properly of all lubricants, oils and any other materials dispose of them in a safe manner consistent with all applicable regulations and in an environmentally compatible way.
10.3 Measures in case of extended shutdown

When the fan is put out of operation for more than three months the following steps must be taken:

- **Drive motors and actuators**
 If there are drains, please open them, drain the accumulated water and re-close the openings. Check the terminal box connections for tight screwing.
- Protect all bright parts (especially fan shaft and coupling) from corrosion.

10.4 Measures in case of recommissioning

Carry out the following steps:

- Check the bearings and shaft seals for tightness
- Check whether the operating materials like oil or grease have been filled in properly, re-fill or re-grease if necessary or exchange the consumables
- Check drives and actuators for condensate water in the terminal box and housing, if necessary, drain the water and dry the interior.
- Remove the anti-corrosion coating from all bright parts which could affect the functioning (e.g. shaft seal, shaft earthing)

It is not permitted to employ damaged or corroded parts or such parts that are unfit for operation.

Prior to a new start-up, chapter 4 Start-up must be observed.
11. Dismantling

11.1 General remarks

The definition “Dismantling” means the removal of the fan and the subsequent re-mounting at a new location or the scrapping of the fan.

Prior to a new start-up especially the chapters 1 to 5 of this operating manual must be observed.

It is recommened to request the field service staff of the manufacturer to carry out the professional dismantling of the fan.

11.2 Safety instructions

Works required for dismantling the fan may exclusively be carried out by specialist personnel, that due to professional training, experiences and instructions has sufficient knowledge about:

- safety regulations,
- regulations for prevention of accidents,
- directives and accepted engineering standards (e. g. German VDE-directives, DIN EN-standards).

The specialist personnel must:

- be able to assess the works allocated to them, to recognize possible dangers and to avoid them.
- be authorized by the person who is responsible for the safety of the plant to carry out the required works and tasks.

Works on electric systems, like disconnecting the fan from the electric supply, must exclusively be carried out by professional electricians.

The dismantling must not start before all works that are required for putting the fan out of action are finished and not before the start of the dismantling works are permitted by an authorized assigned supervisor.

- Initially all accessory parts like flexible connections and louvre dampers must be removed.
- Subsequently remove the monitoring devices and the safety hoods.

Overturning or dropping components can cause most serious injuries or even death.

Secure all components to avoid sliding and dropping of these parts during dismantling works and transport.

Staying below suspended loads means danger to live and therefore must be refrained from in any circumstance.
12. Safety data sheets

The safety data sheets on bearing greases or oils can be submitted on demand from REITZ.
13. Expiry of service life, disposal

Dismantle and dispose of properly and in accordance with the national and international laws and regulations of those fan components and parts, whose service life has expired due to wear and tear, corrosion, mechanical load, fatigue and/or other effects that could not be directly discerned. The same applies to the auxiliary materials used like oil, grease or the like.

Deliberate or unintentional further application of used parts, e.g. impellers, bearings, couplings etc. may endanger persons, harm the environment and/or damage the machine or the complex system. The corresponding local regulations of the operating company are to be observed and applied.
14. Addresses of the REITZ group

Konrad Reitz Ventilatoren GmbH & Co. KG
Konrad-Reitz-Straße 1
37671 Höxter-Albaxen
phone: +49 (5271) 9 64 - 0 00
E-mail: info@reitz-ventilatoren.de
www.reitz-ventilatoren.de
24-h Hotline +49 (170) 56 32 768

Reitz Umwelttechnik + Ventilatoren GmbH & Co. KG
Gutenbergstraße 20-24
37235 Hessisch Lichtenau
phone: +49 (5602) 936 - 60
E-mail: info@reitz-umwelttechnik.de
www.reitz-umwelttechnik.de
24-h Hotline +49 (170) 56 32 768

Reitz Schweiz Ventilator AG
Zentweg 11
CH-3006 Bern
phone: +41 (31) 938 85 85
E-mail: info@reitz-schweiz.ch
www.reitz-schweiz.ch
24-h Hotline +41 (79) 62 21 247

Reitz Retrofit GmbH & Co. KG
Röttgerweg 12
51371 Leverkusen
phone: +49 (214) 202 99 100
E-mail: info@reitz-retrofit.de
www.reitz-retrofit.de
Reitz Fans (Suzhou) Co., Ltd.
No. 2, Minsheng Road
215126 SIP Suzhou, PRC
phone: +86 (512) 62 85 61 00
E-mail: info@reitz-china.com.cn

Reitz India Limited
VII Floor, Block - A
Q-City Gachibowli, Nanakramguda
Hyderabad – 500 032, India
phone: +91 (40) 4488 1888
E-mail: info@reitzindia.com
www.reitzindia.com

Reitz Wentylatory Polska Sp. z o.o.
ul. Dziadoszańska 10
61-248 Poznań, Polska
phone: +48 (61) 62 42 772
E-mail: gwp@reitz-wentylatory.pl
www.reitz-wentylatory.pl
Reitz France S.a.r.l.
20, Avenue de la Paix
F-67000 Strasbourg
phone: +49 (5271) 96 42 31
E-mail: mra@reitz-ventilatoren.de

Reitz Middle East FZE
P.O. Box – 9383, Y-3-210
Sharjah Airport Free Zone
Sharjah, UAE
phone: +971 50 1737486
E-mail: spk@reitzindia.com

Reitz SE-ASIA PTE LTD
31, Cantonment Road
Singapore-089747
phone: +65 622 44991
E-mail: sa@reitzindia.com